• 제목/요약/키워드: Concrete construction

검색결과 8,307건 처리시간 0.03초

고강도 콘크리트의 섬유 혼입에 따른 크리프 특성 분석에 관한 연구 (An Analytic Study on the Creep Properties for Fibers Mixed of High Strength Concrete)

  • 박희곤;권해원;이보형;배연기;이재삼;정상진
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2009년도 추계 학술논문 발표대회
    • /
    • pp.81-85
    • /
    • 2009
  • In the recent years, the high strength concrete has increasingly been used according to extending market of tall buildings. However, Ministry of Land, transport and Maritime Affairs was established by law with an alternative plan after June 2008 because of the weakness of high strength concrete accompanied spalling phenomena in fire. The mix design of concrete has to properly meet standards which are the spalling resistance of concrete and limited temperature of steel reinforcement. The fire proof concrete mixed fiber has widely been used to meet spalling safety on the many construction sites, the most researches about the fire proof concrete mixed fiber had being carried out focused on fire resistance, compressive strength and cast in place of concrete. But the most important thing is column shortening used the fire proof concrete within the vertical members. In this paper, the fire proof concrete filled spalling safety standards was experimented by required material when the column shortening is revised between normal concrete and fire proof concrete mixed fiber and then the results have done a comparative analysis. Also, The paper aimed to indicate a basic data for revision of column shortening of fire proof concrete.

  • PDF

케이슨 구조물 고내구성 콘크리트 내구수명 평가 (Service Life Evaluation of High Durability Concrete in Caisson Structure)

  • 유조형;김우재;홍석범
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2014년도 추계 학술논문 발표대회
    • /
    • pp.42-43
    • /
    • 2014
  • In order to ensure the construction of sustainable reinforced concrete structures, durability evaluation of Caisson structures before construction should be carried out. In this paper, a service life evaluation technique using a safety factor determined by a reliability theory for Caisson structures subjected to chloride attack is proposed.

  • PDF

콘크리트용 건설자재의 단기수요 예측모형에 관한 연구 (A Study on the Short-Term Demand Forecasing System of the Construction Materials for Concrete)

  • 최민수;김무한
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1991년도 가을 학술발표회 논문집
    • /
    • pp.146-151
    • /
    • 1991
  • In recent years a reasonable supply and demand plan of construction materials which is based upon an accurate forecast has been greatly required to prevent construction works from delaying and slapdash. To meet an above requirement, a short-term forecasting system of construction materials, in this paper, is established, which is approached in engineering aspect and emerged from conventional forecasting systems. The major considerations in setting up this system are the distributed lag of consrection business indicators and seasonal variations in consumption of constuction materials.

  • PDF

2중 다이어프램을 이용한 CFT내진보강공법 (CFT seismic reinforcement method using double diaphragm)

  • 우종열;신승훈
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2022년도 가을 학술논문 발표대회
    • /
    • pp.153-154
    • /
    • 2022
  • When reinforcing an existing building with the Concrete Filled Tube(CFT) structure, it is impossible to form a diaphragm inside with the existing method. Therefore, in this study, a construction method was proposed so that the force could be transmitted using the friction force between the diaphragm and the concrete using a double diaphragm.

  • PDF

Shear strength of reinforced concrete dapped-end beams

  • Lin, Ing-Jaung;Hwang, Shyh-Jiann;Lu, Wen-Yao;Tsai, Jiunn-Tyng
    • Structural Engineering and Mechanics
    • /
    • 제16권3호
    • /
    • pp.275-294
    • /
    • 2003
  • In this study, 24 high-strength concrete dapped-end beams were tested to study the effects of the amount of main dapped-end reinforcement, the nominal shear span-to-depth ratio, and the concrete strength on the shear strength of dapped-end beams. Test results indicate that the shear strength of dapped ends increases with the increase in the amount of main dapped-end reinforcement and the concrete strength. The shear strength of dapped-end beam increases with the decrease of nominal shear span-to-depth ratio. A simplified method for determining the shear strength of reinforced concrete dapped ends is also proposed in this paper. The shear strengths predicted by the proposed method and the approach of PCI Design Handbook are compared with test results. The comparison shows that the proposed method can more accurately predict the shear strength of reinforced concrete dapped-end beams than the approach of PCI Design Handbook.

교량 바닥판 보수공사에서 발생하는 콘크리트 폐수처리 방안 (Treatment of Concrete Wastewater in Repair of Bridge Deck)

  • 이봉학;최판길;김정기
    • 산업기술연구
    • /
    • 제28권A호
    • /
    • pp.125-132
    • /
    • 2008
  • As of 2003, construction waste has been produced at the level of 130,614.8 tons/day, in which the amount of waste concrete was 92,639.1 tons/day and accounted for about 66.4% of the amount of construction waste. Waste concrete is mainly produced in construction work and civil engineering work. Especially, road surface crushing method using a large amount of water requires thorough management of concrete wastewater. The aim of this study was to analyze water pollution due to concrete wastewater generated in repair of bridge deck using road surface crushing equipment and to suggest reasonable countermeasures for solve the problem. In this study, it was surveyed current conditions of produced concrete wastewater in bridge deck repair, analyzed physical features of concrete wastewater, expected effects of water pollution on inflow rivers if it is not treated, established treatment plan of water pollution by categories, and calculated capacity of each treatment process and required amount of necessary chemicals. As a result of sampling wastewater generated in field sites and testing it at a lab scale, it was revealed that the original wastewater was produced in removing concrete from bridge deck slabs using surface crushing equipment whose pH was 12.53, CODMn was 12.910mg/L, SS was 547.0mg/L, and other heavy metals were included in extremely small quantities.

  • PDF

고로슬래그 미분말을 사용한 재생굵은골재 콘크리트의 유동특성에 관한 실험적 연구 (The Experience Study on the Floating Properties of Concrete with Recycled Coarse Aggregate used Blast Furnace Slag)

  • 김호수;백철우;최성우;반성수;류득현
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 춘계 학술발표회 제16권1호
    • /
    • pp.356-359
    • /
    • 2004
  • Recently, owing to the deterioration of reconstruction and the construction, much of the construction waste is discharged in our construction field, and the amount of construction waste are rapidly increased. These waste are raised to financial and environmental problems, so the method of reusing waste concretes has been studied and carried out many direction. Especially being want of resources, if waste concrete could be recycled as aggregate for concrete, it will contribute to solve the exhaustion of natural aggregate, in terms of saving resources and protecting environment. This study is that the floating properties of concrete with recycled coarse aggregate were investigated for the substitution of recycled coarse aggregate. The result of this study, floating properties increases and strength development of concrete is showing a clear strength increase effect compare to blast furnace slag non-mixing according to age passing in case of use blast furnace slag. The Quality of recycled coarse aggregate concrete was improved by water reducing.

  • PDF

Effect of Wet Curing Duration on Long-Term Performance of Concrete in Tidal Zone of Marine Environment

  • Khanzadeh-Moradllo, Mehdi;Meshkini, Mohammad H.;Eslamdoost, Ehsan;Sadati, Seyedhamed;Shekarchi, Mohammad
    • International Journal of Concrete Structures and Materials
    • /
    • 제9권4호
    • /
    • pp.487-498
    • /
    • 2015
  • A proper initial curing is a very simple and inexpensive alternative to improve concrete cover quality and accordingly extend the service life of reinforced concrete structures exposed to aggressive species. A current study investigates the effect of wet curing duration on chloride penetration in plain and blended cement concretes which subjected to tidal exposure condition in south of Iran for 5 years. The results show that wet curing extension preserves concrete against high rate of chloride penetration at early ages and decreases the difference between initial and long-term diffusion coefficients due to improvement of concrete cover quality. But, as the length of exposure period to marine environment increased the effects of initial wet curing became less pronounced. Furthermore, a relationship is developed between wet curing time and diffusion coefficient at early ages and the effect of curing length on time-to-corrosion initiation of concrete is addressed.

Self-Consolidating Concrete Incorporating High Volume of Fly Ash, Slag, and Recycled Asphalt Pavement

  • Mahmoud, Enad;Ibrahim, Ahmed;El-Chabib, Hassan;Patibandla, Varun Chowdary
    • International Journal of Concrete Structures and Materials
    • /
    • 제7권2호
    • /
    • pp.155-163
    • /
    • 2013
  • The use of sustainable technologies such as supplementary cementitious materials (SCMs), and/or recycled materials is expected to positively affect the performance of concrete mixtures. However, it is imperative to qualify and implement such mixtures in practice, if the required specifications of their intended application are met. This paper presents the results of a laboratory investigation of self-consolidating concrete (SCC) containing sustainable technologies. Twelve mixes were prepared with different combinations of fly ash, slag, and recycled asphalt pavement (RAP). Fresh and hardened concrete properties were measured, as expected the inclusion of the sustainable technologies affected both fresh and hardened concrete properties. Analysis of the experimental data indicated that inclusion of RAP not only reduces the ultimate strength, but it also affected the compressive strength development rate. The addition of RAP to mixes showed a consistent effect, with a drop in strength after 3, 14, and 28 days as the RAP content increased from 0 to 50 %. However, most of the mixes satisfied SCC fresh properties requirements, including mixes with up to 50 % RAP. Moreover, several mixes satisfied compressive strength requirement for pavements and bridges, those mixes included relatively high percentages of SCMs and RAP.

Urea 혼입 매스콘크리트의 FEM 온도균열 해석을 위한 수화발열특성에 관한 실험적 연구 (An Experimental Study on Hydration Heat Characteristics for Thermal Crack Analysis Based on FEM of Urea Mixed Mass Concrete)

  • 문동환;장현오;이한승
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2019년도 춘계 학술논문 발표대회
    • /
    • pp.36-37
    • /
    • 2019
  • In domestic construction industry progress, construction and quality control of large structures are considered to be important as the superstructure and mass scale of structures. In the case of mass concrete, high hydration heat caused by cement hydration generates temperature stress by generating internal temperature difference with the concrete surface. These temperature stresses cause cracks to penetrate the concrete structure. A method of lowering the heat generation by incorporating Urea in order to reduce the concrete temperature crack has been proposed. In this study, the heat function coefficient for the FEM temperature crack analysis of the mass concrete containing the element was derived and the adiabatic temperature rise test was carried out according to the incorporation of the element. As a result of this experiment, the maximum temperature of 41 ± 1℃ was obtained irrespective of the amount of urea, and the maximum temperature decreased by 16.9℃ in concrete containing 40kg/㎥ of urea.

  • PDF