• Title/Summary/Keyword: Concrete construction

Search Result 8,320, Processing Time 0.033 seconds

An Experimental Study on Engineering Propeties of Recycled Concrete using Waste Concrete (폐콘크리트를 사용한 재생콘크리트의 공학적 특성에 관한 실험적 연구)

  • 구봉근;이상근;김창운;류택은;박재성
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.70-75
    • /
    • 1999
  • The purpose of this study is to recycle the waste concrete which is generated in large quantities as crushed stone in construction works. This study deals with the comparative analysis on the construction works and engineering properties of recycled aggregate concrete through physical experiment. The experimental variables are the kinds of aggregates, some different aggregate composition, and W/C ratio(0.40, 0.45, 0.50). It is able to find from the experimental results that the recycled aggregate concrete is good as general concrete on the construction works and engineering propperties. In addition to, the reliable regression analysis equations between compressive strength and various experimental data for recycled aggregate concrete are presented.

  • PDF

The mechanical properties and durability of self-compacting concrete according to the substitution ratio of lightweight aggregate (경량골재 혼합률에 따른 자기충전콘크리트의 역학 및 내구 특성)

  • Choi, Yun-Wang;Kim, Yong-Jic;Jung, Jea-Guane;Choi, Wook;Cho, Sun-Kyu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.411-414
    • /
    • 2005
  • Concrete structure is recognized as the universal structuring material for its outstanding formability, economic efficiency, and strength development. However, as the ageing of field workers and the deficiency of skilled workers due to evasions from 3D business have recently become the major issues of the industry in Korea and as the materials are becoming more diversified and complicated for today's concrete structures are becoming higher, larger, and specialized, the need for practicality of construction work based on new technology and new method has greatly increased. In other words, the overall condition of today's construction business requires researches and developments on the self-compacting concrete for higher construction efficiency and quality improvements and the high-strength lightweight concrete for concrete weight reduction and reduction of area. Therefore experimental tests were performed as such compressive strength, dry shrinkage and carbonation of self-compacting concrete.

  • PDF

Propose of Eco-efficiency Evaluation Method for Concrete (콘크리트의 에코효율성 평가방법 제안에 관한 연구)

  • Kim, Tae-Hyoung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.187-188
    • /
    • 2016
  • The purpose of this study is to develop a method of evaluating eco-efficiency of concrete based on environmental load emission, manufacturing cost, and durability in the concrete production process. Eco-efficiency is an advanced concept used to evaluate eco-friendliness of concrete. This technique intends to produce environment-friendly and highly durable concrete while minimizing environmental load on the ecosystem and manufacturing cost based on the results of service life assessment on concrete. This technique can be utilized to efficiently evaluate sustainability of concrete and find methods to improve it. Furthermore, the vision of this study is to contribute to implementation of environment-friendly concrete and construction industry.

  • PDF

Construction Management Method for Asphalt Paving Using Ground Penetrating Radar and an Infrared Camera (지표투과레이더와 적외선카메라를 이용한 아스팔트 포장 시공 관리 방법)

  • Baek, Jongeun;Park, Hee Mun;Yoo, Pyung Jun;Im, Jae Kyu
    • International Journal of Highway Engineering
    • /
    • v.17 no.6
    • /
    • pp.1-9
    • /
    • 2015
  • PURPOSES : The objective of this study is to propose a quality control and quality assurance method for use during asphalt pavement construction using non-destructive methods, such as ground penetrating radar (GPR) and an infrared (IR) camera. METHODS : A 1.0 GHz air-coupled GPR system was used to measure the thickness and in situ density of asphalt concrete overlay during the placement and compaction of the asphalt layer in two test construction sections. The in situ density of the asphalt layer was estimated based on the dielectric constant of the asphalt concrete, which was measured as the ratio of the amplitude of the surface reflection of the asphalt mat to that of a metal plate. In addition, an IR camera was used to monitor the surface temperature of the asphalt mat to ensure its uniformity, for both conventional asphalt concrete and fiber-reinforced asphalt (FRA) concrete. RESULTS : From the GPR test, the measured in situ air void of the asphalt concrete overlay gradually decreased from 12.6% at placement to 8.1% after five roller passes for conventional asphalt concrete, and from 10.7% to 5.9% for the FRA concrete. The thickness of the asphalt concrete overlay was reduced from 7.0 cm to 6.0 cm for the conventional material, and from 9.2 cm to 6.4 cm for the FRA concrete. From the IR camera measurements, the temperature differences in the asphalt mat ranged from $10^{\circ}C$ to $30^{\circ}C$ in the two test sections. CONCLUSIONS : During asphalt concrete construction, GPR and IR tests can be applicable for monitoring the changes in in situ density, thickness, and temperature differences of the overlay, which are the most important factors for quality control. For easier and more reliable quality control of asphalt overlay construction, it is better to use the thickness measurement from the GPR.

A Proposal for Improving the Measurement and Management of Unit Water Content in In-Situ Concrete (현장 타설 콘크리트의 단위수량 측정 및 관리 개선 방안 제시)

  • Yun, Ja-yeon;Jang, Hyo-Jun;Lee, Taegyu;Choi, Hyeonggil
    • Journal of the Korea Institute of Building Construction
    • /
    • v.24 no.3
    • /
    • pp.319-329
    • /
    • 2024
  • This study examined domestic and international regulations concerning concrete unit weight, along with an evaluation of unit weight in concrete poured on construction sites. Fluctuations in unit weight were observed to correlate with concrete quality issues such as material separation, bleeding, and latency. A word cloud analysis, centered on the concept of concrete quality, further highlighted the significant influence of unit weight. Comparative analysis between Korea and Japan revealed few substantial differences in unit weight management and measurement techniques. However, calculation of concrete unit weight at delivery, using the unit volume mass method, indicated considerable variability among random on-site samples. Notably, the unit weight often exceeded the recommended standard. These findings emphasize the necessity for strict adherence to unit weight standards by all stakeholders involved in concrete production and construction, including ready-mix concrete (REMICON) producers, construction firms, and inspectors. To ensure consistent quality of cast concrete on-site, the establishment of a more comprehensive and practical system is recommended, incorporating measures such as on-site inspections.

Field Measurement of Hydration Heat and Field Aaaplication of Pipe Cooling System (수화열 계측 및 파이프쿨링 시공 사례)

  • 최계식;양주경;최영돈;최고일
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.10a
    • /
    • pp.381-386
    • /
    • 1994
  • Recently, the design and construction of massive concrete structures are increased. But, the temperature rise within a large concrete mass make the construction of massive concrete structures be very difficult. Therefore, in Seohae Grand Bridge Project, the field measurement of hydration heat for the massive concrete footings(11$\times$22$\times$4m) was carried out. It was shown to be possible to construct the massive concrete footing successfully by application of pipe cooling system. And the measurement results showed that standard code for concrete practice was very conservative.

  • PDF

An Experimental Study on Roller Compacted Concrete (진동 전압 콘크리트의 실험실적 연구)

  • 현석훈;김진춘;김병권
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.10a
    • /
    • pp.393-398
    • /
    • 1994
  • Roller compacted concrete(RCC) has been attracted due to its growing application to pavement concrete construction. In this study optimum mixing formation of RCC was explored and characterized its properties forcusing on reducing try and error for actual application to construction of pavement. The concrete used for roller compacted concrete pavement (RCCP) has very low water content per unit volume, so that it develops early high strength. This high early strength development makes pavement constructed open early. This concrete also showed very reduced crack formed on the surface because of expensive cement.

  • PDF

A Study on the Strength of Concrete Affected by Revibration (콘크리트 강도의 진동영향에 관한 연구)

  • 정하선;권영웅;오용복
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1991.04a
    • /
    • pp.37-40
    • /
    • 1991
  • This experimental study was performed to find out the vibration damage of concrete. The major factors of this test were duration of vibration and curing age of concrete when vibrated. According to the serial test results, construction vibrations may cause critical damage to the concrete structures if the age of concrete when vibrated is about 4 hours.

  • PDF

Simulating the construction process of steel-concrete composite bridges

  • Wu, Jie;Frangopol, Dan M.;Soliman, Mohamed
    • Steel and Composite Structures
    • /
    • v.18 no.5
    • /
    • pp.1239-1258
    • /
    • 2015
  • This paper presents a master-slave constraint method, which may substitute the conventional transformed-section method, to account for the changes in cross-sectional properties of composite members during construction and to investigate the time-dependent performance of steel-concrete composite bridges. The time-dependent effects caused by creep and shrinkage of concrete are considered by combining the age-adjusted effective modulus method and finite element analysis. An efficient computational tool which runs in AutoCAD environment is developed to simulate the construction process of steel-concrete composite bridges. The major highlight of the developed tool consists in a very convenient and user-friendly interface integrated in AutoCAD environment. The accuracy of the proposed method is verified by comparing its results with those provided by using the transformed-section method. Furthermore, the computational efficiency of the developed tool is demonstrated by applying it to a steel-concrete composite bridge.

Development of low-carbon eco-friendly concrete using super-sulfated cement (고황산염 시멘트를 활용한 저탄소 친환경 콘크리트 개발)

  • Ki, Jun-Do;Lee, Sang-Hyun;Kim, Young-Sun;Jeon, Hyun-Soo;Seok, Won-Kyun;Yang, Wan-Hee
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.199-200
    • /
    • 2023
  • Eco-friendly concrete contains only 5% of cement yet achieves equal or greater strength compared to conventional concrete, reducing salt-attack impact and hydration heat by more than 30% and ensuring higher construction quality for underground structures. Furthermore, eco-friendly concrete can reduce up to 90% of carbon dioxide emissions compared to traditional concrete, enabling a reduction of approximately 6,000 tons of carbon emissions for 1,000 of apartment units construction. This is equivalent to planting around 42,000 trees

  • PDF