• 제목/요약/키워드: Concrete confinement

검색결과 646건 처리시간 0.023초

Experiment of Compressive Strength Enhancement of Circular Concrete Column Confined by Carbon Tubes

  • Hong Won-Kee;Kim Hee-Cheul;Yoon Suk-Han
    • KCI Concrete Journal
    • /
    • 제14권4호
    • /
    • pp.139-144
    • /
    • 2002
  • Concrete filled FRP tube has lately attracted attention as the member that can substitute the conventional reinforced concrete. Glass fiber and carbon fiber are some of available materials for FRP tube. Carbon tube is filament wound with specified winding angle to meet the appropriate capacity demands. Confinement effect of carbon tube is varied according to winding angle. In this study, a total 4 of large scale circular specimens of 30cm diameter and 60cm height is tested. To estimate the effect of winding angle and thickness of carbon tube on the increased confined compressive strength, the test tube are wound with $\pm45^{\circ}\;and\;\pm30^{\circ}$ with two types of thickness, 2mm and 3mm, respectively. It is shown that effectively increased confined strength and ductility are observed from the specimens with $\pm45^{\circ}$ winding angle than $\pm30^{\circ}$ winding angle. Increasing thickness is not as effective as adjusting winding angle for the confinement of concrete core.

  • PDF

순환 굵은 골재 콘크리트의 횡구속 효과 (Confinement Effect of Recycled Coarse Aggregate Concrete)

  • 정창교;김도진;이선희;김영식;김상우;김길희
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2010년도 춘계 학술대회 제22권1호
    • /
    • pp.91-92
    • /
    • 2010
  • 본 연구에서는 순환 굵은 골재를 사용한 콘크리트의 나선철근에 의한 횡구속 효과에 관한 실험을 수행 하였다. 그 결과, 순환골재를 사용한 콘크리트와 천연골재를 사용한 콘크리트의 나선철근에 의한 횡구속 효과의 차이를 확인할 수 없었다.

  • PDF

Strength enhancement in confined concrete with consideration of flexural flexibilities of ties

  • Teerawong, J.;Lukkunaprasit, P.;Senjuntichai, T.
    • Structural Engineering and Mechanics
    • /
    • 제18권2호
    • /
    • pp.151-166
    • /
    • 2004
  • The interaction between concrete core expansion and deformation of perimeter ties has been known to have a significant effect on the effective confinement of rectangular reinforced concrete (RC) tied columns. This interaction produces passive confining pressure to the concrete core. Most existing models for determining the response of RC tied columns do not directly account for the influence of flexural stiffness of the ties and the variation of confining stress along the column height. This study presents a procedure for determining the confined compressive strength of RC square columns confined by rectilinear ties with various tie configurations considering directly the influence of flexural flexibility of the ties and the variation of confining stress along the vertical direction. The concept of area compatibility is employed to ensure compatibility of the concrete core and steel hoop in a global sense. The proposed procedure yields satisfactory predictions of confined strengths compared with experimental results, and the influence of tie flexibility, tie configuration and degree of confinement can be well captured.

Confinement effect on the behavior factor of dual reinforced concrete moment-resisting systems with shear walls

  • Alireza Habibi;Mehdi Izadpanah;Yaser Rahmani
    • Structural Engineering and Mechanics
    • /
    • 제85권6호
    • /
    • pp.781-791
    • /
    • 2023
  • Lateral pressure plays a significant role in the stress-strain relationship of compressed concrete. Concrete's internal cracking resistance, ultimate strain, and axial strength are improved by confinement. This phenomenon influences the nonlinear behavior of reinforced concrete columns. Utilizing behavior factors to predict the nonlinear seismic responses of structures is prevalent in seismic codes, and this factor plays a vital role in the seismic responses of structures. This study aims to evaluate the confining action on the behavior factor of reinforced concrete moment resisting frames (RCMRFs) with shear walls (SWRCMRFs). To this end, a diverse range of mid-rise SW-RCMRFs was initially designed based on the Iranian national building code criteria. Second, the stress-strain curve of each element was modeled twice, both with and without the confinement phenomenon. Each frame was then subjected to pushover analysis. Finally, the analytical behavior factors of these frames were computed and compared to the Iranian seismic code behavior factor. The results demonstrate that confining action increased the behavior factors of SW-RCMRFs by 7-12%.

철근콘크리트 띠철근 기둥의 구속효과 (Confinement Effects of Reinforced Concrete Tied Columns)

  • 왕성근;한범석;이희수;신성우;반병열
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.29-34
    • /
    • 2001
  • An experimental study was conducted to investigate the effectiveness of transverse reinforcement in reinforced concrete tied columns subjected to monotonically increasing axial compression. Eighteen large-scale columns(260$\times$260$\times$120mm) were fabricated to simulate similarly an actual structural members size. Effects of main variables such as the concrete compressive strength, the tie configuration, the transverse reinforcement ratio, the tie spacing, and the spatting of the concrete cover were studied in this research program.

  • PDF

Finite element modelling of reinforced concrete structures with laboratory verification

  • Cheng, Y.M.
    • Structural Engineering and Mechanics
    • /
    • 제3권6호
    • /
    • pp.593-609
    • /
    • 1995
  • The presence of reinforcement has a significant influence on the stress-strain behaviour of reinforced concrete structures, expecially when the failure stage of the structures is approached. In the present paper, the constrained and non-constrained zones of concrete due to the presence of reinforcement is developed and the stress-stress-strain behaviour of concrete is enhanced by a reinforcement confinement coefficient, Furthermore, a flexible method for the modelling of reinforcement with arbitrary orientation and not passing the nodes of concrete element is also proposed. Numerical examples and laboratory tests have shown that the coefficient and the modelling technique proposed by the author are satisfactory.

Effect of axial loading conditions and confinement type on concrete-steel composite behavior

  • Nematzadeh, Mahdi;Fazli, Saeed
    • Computers and Concrete
    • /
    • 제25권2호
    • /
    • pp.95-109
    • /
    • 2020
  • This paper aims to analytically study the effect of loading conditions and confinement type on the mechanical properties of the concrete-steel composite columns under axial compressive loading. The axial loading is applied to the composite columns in the two ways; only on the concrete core, and on the concrete core and steel tube simultaneously, which are called steel tube-confined concrete (STCC) and concrete-filled steel tube (CFST) columns, respectively. In addition, the confinement is investigated in the three types of passive, short-term active and long-term active confinement. Nonlinear finite element 3D models for analyzing these columns are developed using the ABAQUS program, and then these models are verified with respect to the recent experimental results reported by the authors on the STCC and CFST columns experiencing active and passive confinements. Axial and lateral stress-strain curves as well as the failure mode for qualitative verification, and compressive strength for quantitative verification are considered. It is found that there is a good consistency between the finite element analysis results and the experimental ones. In addition, a parametric study is performed to evaluate the effect of axial loading type, prestressing ratio, concrete compressive strength and steel tube diameter-to-wall thickness ratio on the compressive behavior of the composite columns. Finally, the compressive strength results of CFST specimens obtained via the finite element analysis are compared with the values specified by the international codes and standards including EC4, CSA, ACI-318, and AISC, with the results showing that ACI-318 and AISC underestimate the compressive strength of the composite columns, while EC4 and CSA codes present overestimated values.

경수로 사용후핵연료 건식저장시스템의 격납감시 기술현황 분석 (Status Analysis for the Confinement Monitoring Technology of PWR Spent Nuclear Fuel Dry Storage System)

  • 백창열;조천형
    • 방사성폐기물학회지
    • /
    • 제14권1호
    • /
    • pp.35-44
    • /
    • 2016
  • Leading national R&D project to design a PWR spent nuclear fuel interim dry storage system that has been under development since mid-2009, which consists of a dual purpose metal cask and concrete storage cask. To ensure the safe operation of dry storage systems in foreign countries, major confinement monitoring techniques currently consist of pressure and temperature measurement. In the case of a dual purpose metal cask, a pressure sensor is installed in the interspace of bolted double lid(primary and secondary lid) in order to measure pressure. A concrete storage cask is a canister based system made of double/redundant welded lid to ensure confinement integrity. For this reason, confinement monitoring method is real time temperature measurement by thermocouple placed in the air flow(air intake and exit) of the concrete structure(over pack and module). The use of various monitoring technologies and operating experiences for the interim dry storage system over the last decades in foreign countries were analyzed. On the basis of the analysis above, development of the confinement monitoring technology that can be used optimally in our system will be available in the near future.

구조벽의 단부 횡보강 설계 (Design of Boundary Confinement of Structural Walls)

  • 강수민;박홍근
    • 콘크리트학회논문집
    • /
    • 제15권6호
    • /
    • pp.877-887
    • /
    • 2003
  • 구조벽의 성능에 기초한 내진설계를 위해서는 변형요구량을 만족시킬 수 있도록 구조벽의 횡보강 길이 및 보강상세를 결정하는 합리적인 설계 방법이 필요하다. 이를 위하여, 다양한 설계변수를 고려하여 단부 횡보강된 구조벽의 최대곡률성능을 정의하였고 벽체의 형상, 설계변위에 따른 곡률요구량을 정의하였다. 벽체의 곡률성능과 요구량을 등가로 하여 벽체 단부의 횡보강길이를 산정할 수 있는 방법을 제안하였다. 본 방법에 의하면 단부횡보강길이는 압축력과 설계변위가 증가하면 늘어나고 콘크리트 강도, 벽체두께, 횡보강효과, 형상비가 커지면 줄어든다. 또한 효율적인 단부 횡보강 효과와 시공성을 확보하기 위해서 단부 횡보강상세에 대한 연구를 수행하였으며 이 연구결과를 근거로 효율적인 횡보강근의 배치간격에 대한 합리적인 지침을 제안하였다.

Axial capacity of reactive powder concrete filled steel tube columns with two load conditions

  • Wang, Qiuwei;Shi, Qingxuan;Xu, Zhaodong;He, Hanxin
    • Steel and Composite Structures
    • /
    • 제31권1호
    • /
    • pp.13-25
    • /
    • 2019
  • Reactive powder concrete (RPC) is a type of ultra-high strength concrete that has a relatively high brittleness. However, its ductility can be improved by confinement, and the use of RPC in composite RPC filled steel tube columns has become an important subject of research in recent years. This paper aims to present an experimental study of axial capacity calculation of RPC filled circular steel tube columns. Twenty short columns under axial compression were tested and information on their failure patterns, deformation performance, confinement mechanism and load capacity were presented. The effects of load conditions, diameter-thickness ratio and compressive strength of RPC on the axial behavior were further discussed. The experimental results show that: (1) specimens display drum-shaped failure or shear failure respectively with different confinement coefficients, and the load capacity of most specimens increases after the peak load; (2) the steel tube only provides lateral confinement in the elastic-plastic stage for fully loaded specimens, while the confinement effect from steel tube initials at the set of loading for partially loaded specimens; (3) confinement increases the load capacity of specimens by 3% to 38%, and this increase is more pronounced as the confinement coefficient becomes larger; (4) the residual capacity-to-ultimate capacity ratio is larger than 0.75 for test specimens, thus identifying the composite columns have good ductility. The working mechanism and force model of the composite columns were analyzed, and based on the twin-shear unified strength theory, calculation methods of axial capacity for columns with two load conditions were established.