• Title/Summary/Keyword: Concrete confinement

Search Result 651, Processing Time 0.027 seconds

Performance Evaluation of Confined Concrete According to Cross Sectional Shape (단면형상에 따른 횡구속 콘크리트의 성능 평가)

  • Kim, Young-Sik;Kim, Min-Jun;Kim, Sang-Woo;Baek, Seung-Cheol;Lee, Jung-Yoon;Kim, Kil-Hee
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.77-78
    • /
    • 2010
  • This study investigated the influence of concrete compressive strength for the lateral confinement of high-strength spiral reinforcement. The main test parameters were the compressive strength of concrete, the yield strength of spiral reinforcement, and cross sectional shape. A total of 48 cylindrical test specimens with circularand rectangular sections were cast and tested under monotonic concentric compression.

  • PDF

Behavior and calculation on concrete-filled steel CHS (Circular Hollow Section) beam-columns

  • Han, Lin-Hai;Yao, Guo-Huang;Zhao, Xiao-Ling
    • Steel and Composite Structures
    • /
    • v.4 no.3
    • /
    • pp.169-188
    • /
    • 2004
  • A mechanics model is developed in this paper for concrete-filled steel CHS (circular hollow section) beam-columns. A unified theory is described where a confinement factor (${\xi}$) is introduced to describe the composite action between the steel tube and the filled concrete. The predicted load versus deformation relationship is in good agreement with test results. The theoretical model was used to investigate the influence of important parameters that determine the ultimate strength of concrete-filled steel CHS beam-columns. The parametric and experimental studies provide information for the development of formulas for the calculation of the ultimate strength of the composite beam-columns. Comparisons are made with predicted beam-columns strengths using the existing codes, such as LRFD-AISC-1999, AIJ-1997, BS5400-1979 and EC4-1994.

An Experimental Study on Stress-Strain Behavior of Confined Concrete Columns with Rectangular Sections (직사각형 단면 콘크리트 기둥의 응력-변형 거동에 관한 실험연구)

  • Oh, Byung-Hwan;Kim, Ki-Wan;Choi, Seung-Won;Park, Young-Ho
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.345-352
    • /
    • 2005
  • The purpose of this study is to analyze the stress-strain behavior of confined concrete columns with rectangular section. Uniaxial concentric loading tests of nineteen concrete columns with rectangular section ($150{\times}100$, $250{\times}100$, $350{\times}100\;mm$) were conducted. The main variables are transverse reinforcement volumetric ratio and spacing, cross tie arrangement, cross-section aspect ratio, and concrete strength. From the present experiments, it was found that the increase of transverse reinforcement ratio increases the maximum stress and ductility ratio and the reduction of the spacing of transverse reinforcement also increases the ductility and effective confinement. The increase of the aspect ratio of the cross-section does not influence much the stress-strain behavior of rectangular columns within the aspect ratio range of 3.5. The effect of concrete strength on ductility is also discussed.

  • PDF

A physically consistent stress-strain model for actively confined concrete

  • Shahbeyk, Sharif;Moghaddam, Mahshid Z.;Safarnejad, Mohammad
    • Computers and Concrete
    • /
    • v.20 no.1
    • /
    • pp.85-97
    • /
    • 2017
  • With a special attention to the different stages of a typical loading path travelled in a fluid confined concrete test, this paper introduces a physically consistent model for the stress-strain curve of actively confined normal-strength concrete in the axial direction. The model comprises of the five elements of: (1) a criterion for the peak or failure strength, (2) an equation for the peak strain, (3) a backbone hydrostatic curve, (4) a transient hardening curve linking the point of departure from the hydrostatic curve to the failure point, and finally (5) a set of formulas for the post-peak region. Alongside, relevant details and shortcomings of existing models will be discussed in each part. Finally, the accuracy and efficiency of the proposed model have been verified in a set of simulations which compare well with the experimental results from the literature.

Characteristics of Concrete Filled Circular Tubular Stub Columns based on Experiment and Data Analysis (실험 및 데이터 분석에 의한 CFCT 단주 특성)

  • Kang, Hyun-Sik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.5 no.1
    • /
    • pp.161-168
    • /
    • 2001
  • The use of composite members to improve the compressive strength of steel structure is a common practice these days and its efficiency has already been proved by several researches and experiments. The result of concrete filled circular tubular(CFCT) stub column tests is introduced in this paper. The main parameter of this test is the ratio of diameter to thickness of circular hollow section. From the test results, the effect of concrete filled in steel tube on the ultimate strength, the deformation capacity and initial stiffness are discussed. The purpose of this paper is to investigate the effect of various parameters and evaluate the compressive strength of confined concrete. It would contribute to a better understanding of CFT structure, further laboratory experimentations are needed for better accurate estimation on its effect.

  • PDF

The fiber element technique for analysis of concrete-filled steel tubes under cyclic loads

  • Golafshani, A.A.;Aval, S.B.B.;Saadeghvaziri, M.A.
    • Structural Engineering and Mechanics
    • /
    • v.14 no.2
    • /
    • pp.119-133
    • /
    • 2002
  • A beam-column fiber element for the large displacement, nonlinear inelastic analysis of Concrete-Filled Steel Tubes (CFT) is implemented. The method of description is Total Lagrangian formulation. An 8 degree of freedom (DOF) element with three nodes, which has 3 DOF per end node and 2 DOF on the middle node, has been chosen. The quadratic Lagrangian shape functions for axial deformation and the quartic Hermitian shape function for the transverse deformation are used. It is assumed that the perfect bond is maintained between steel shell and concrete core. The constitutive models employed for concrete and steel are based on the results of a recent study and include the confinement and biaxial effects. The model is implemented to analyze several CFT columns under constant and non-proportional fluctuating concentric axial load and cyclic lateral load. Good agreement has been found between experimental results and theoretical analysis.

Compression field modeling of confined concrete

  • Montoya, E.;Vecchio, F.J.;Sheikh, S.A.
    • Structural Engineering and Mechanics
    • /
    • v.12 no.3
    • /
    • pp.231-248
    • /
    • 2001
  • The three-dimensional behavior of confined concrete was investigated, including strength enhancement due to triaxial compressive stresses, lateral expansion, compression softening, cover spalling and post-peak ductility. A finite element program based on a nonlinear elasticity methodology was employed to evaluate the ability to model triaxial behavior of reinforced concrete (RC) by combining constitutive models proposed by several researchers. The capability of compression field based models to reproduce the softening behavior of lightly cracked confined concrete was also investigated. Data from tested specimens were used to evaluate the validity of the formulations. Good agreement with the experimental results was obtained.

A new approach to determine the moment-curvature relationship of circular reinforced concrete columns

  • Caglar, Naci;Demir, Aydin;Ozturk, Hakan;Akkaya, Abdulhalim
    • Computers and Concrete
    • /
    • v.15 no.3
    • /
    • pp.321-335
    • /
    • 2015
  • To be able to understand the behavior of reinforced concrete (RC) members, cross sectional behavior should be known well. Cross sectional behavior can be best evaluated by moment-curvature relationship. On a reinforced concrete cross section moment-curvature relationship can be best determined by both experimentally or numerically with some complicated iteration methods. Making these experiments or iterations manually is very difficult and not practical. The aim of this study is to research the efficiency of Neural Networks (NN) as a more secure and robust method to obtain the moment-curvature relationship of circular RC columns. It is demonstrated that the NN based model is highly successful to determine the moment-curvature relationship of circular reinforced concrete columns.

Reinforced high-strength concrete square columns confined by aramid FRP jackets -part I: experimental study

  • Wang, Yuan-Feng;Ma, Yi-Shuo;Wu, Han-Liang
    • Steel and Composite Structures
    • /
    • v.11 no.6
    • /
    • pp.455-468
    • /
    • 2011
  • Although retrofitting and strengthening reinforced concrete (RC) columns by wrapping fiber reinforced polymer (FRP) composites have become a popular technique in civil engineering, the study on reinforced high-strength concrete (HSC) columns is still not sufficient. The objective of these companion papers is to investigate the mechanical properties of reinforced HSC square columns confined by aramid FRP (AFRP) jackets under concentric compressive loading. In the part I of these companion papers, an experiment was conducted on 54 confined RC specimens and nine unconfined plain specimens, the considered parameters were the concrete strength, the thickness of AFRP jackets, and the form of AFRP wrapping. The experimental process and results are presented in detail. Subsequently, some discussions on the confinement effect, failure modes, strength, and ductility of the columns are carried out.

Concrete filled double skin tubular members subjected to bending

  • Uenaka, Kojiro;Kitoh, Hiroaki;Sonoda, Keiichiro
    • Steel and Composite Structures
    • /
    • v.8 no.4
    • /
    • pp.297-312
    • /
    • 2008
  • A concrete filled double skin tubular (called CFDST in abbreviation) member consists of two concentric circular steel tubes and filled concrete between them. Purpose of this study is to investigate their bending characteristics experimentally. The two test parameters of the tubes considered were an inner-to-outer diameter ratio and a thickness-diameter ratio. As a result, their observed failure modes were controlled by tensile cracking or local buckling of the outer tube. Discussion is focused on the confinement effect on the filled concrete due to the both tubes and also the influence of the inner-to-outer diameter ratios on their deformability and load carrying capacity.