• Title/Summary/Keyword: Concrete Waste

Search Result 1,132, Processing Time 0.027 seconds

Compressive Strength of Cement mortar Admixed with Waste Phosphogypsum Calcination with various Temperature (하소 온도가 다른 페인산석고를 혼입한 시멘트 모르타르의 압축강도 특성)

  • An Yang Jin;Yoon Seong Jin;Mun Kyoung Ju;Soh Yang Seob
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.228-231
    • /
    • 2004
  • The purpose of this study evaluates possibilities of waste phosphogypsum into concrete by steam curing admixture. The waste phosphogypsums were classified into 4 forms(Dihydrate, $\beta-Hemihydrate$, III-Anhydrite and II-Anhydrite) which were changed to in low temperature of calcination. Also, various admixtures were made of waste phosphogypsum(PG) and pozollanic fine powderers (Fly-ash, Blast Furnace Slag), and the basic properties of the cement mortars incorporating with these admixtures were examined and analyzed under a verity of experimental conditions. As a result, III-Anhydrite, these is similar to II-Anhydrite from compressive strength and are great in the effect of strength improvement. also, it was proved that specimens made on type III-Anhydrite of waste phosphogypsum and blast furnace slag increased on the compressive strength of cement mortar. Therefore, III-Anhydrite phosphogypsum calcined at lower temperature could be used as steam curing admixture for concrete 2th production.

  • PDF

Guided wave analysis of air-coupled impact-echo in concrete slab investigation on the use of waste tyre crumb rubber in concrete paving blocks

  • Murugan, R. Bharathi;Natarajan, C.
    • Computers and Concrete
    • /
    • v.20 no.3
    • /
    • pp.311-318
    • /
    • 2017
  • This paper investigates the utilization of waste tyre crumb rubber as the fine aggregate in precast concrete Paving block (PCPB). PCPB's are generally preferred for city roads, pedestrian crosswalk, parking lots and bus terminals. The main aim of this paper is to evaluate the mechanical properties of wet cast PCPB containing waste tyre crumb rubber. The mechanical properties were investigated using a density, compressive strength, split tensile strength and flexural strength tests at 7, 28 56 days according to the IS 15688:2006 and EN1338. The wet cast method was followed for producing PCPB samples. The fine aggregate (river sand) was replaced with waste tyre crumb in percentage of 5%, 10%, 15%, 20% and 25% by volume. All the test results were compared with the conventional PCPB (Without rubber). The test results indicate its feasibility for incorporating waste tyre crumb rubber in the production of PCPB by the wet cast method.

A study on the manufacture of polymer concrete using the waste paint (폐 페인트를 이용한 폴리머 콘크리트의 제조에 관한 연구)

  • 이창훈;박재읍;최진호;권진회;제우성;김성호
    • Composites Research
    • /
    • v.17 no.2
    • /
    • pp.21-27
    • /
    • 2004
  • In this paper, the polymer concrete using the chemically treated waste paint and polystyrene foam was manufactured and their mechanical properties were evaluated. The compressive strength, specific gravity and water absorption with respect to the volume percents of the waste paint and resin were tested. From the tests, the specific gravities of the polymer concretes using the waste paint were lower than that of the conventional polymer concrete and it was recommended that they can be used for building exterior materials.

The Early-Age Strength Properties of Cement Mortar using Modified Remicon Sludge and Water (레미콘 슬러지 및 상등수를 활용한 시멘트 모르타르의 초기강도)

  • 문한영;신화철;김태욱;여병철;박창수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.1248-1251
    • /
    • 2000
  • Recently, the yearly amount of remicon used in Korea is approximately one hundred million cubic meter, and it caused a by-product, remicon waste sludge. The sludge produced by washing mixers or drums of remicon trucks is restrained by the law for waste disposal because its pH is over 12, so the expense for waste disposal is needed. Until now, the waste sludge water has been recycled and used for concrete materials as sludge water which is limited to 3% of cement unit weight. However, the study on the properties of the concrete mixed with this waste sludge is so insufficient that the quality of them can be hardly trusted. Therefore, the study on that will be discussed.

  • PDF

Investigation of Strength Characteristics of Ferrous Slag and Waste Concrete in Water Contacting Environment by Exposure to Raining Events

  • Kim, Byung-Gon;Shin, Hyunjin;Lee, Seunghak;Park, Junboum
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.2
    • /
    • pp.1-7
    • /
    • 2016
  • Ferrous slag is a by-product from steel making process and waste concrete is generated from construction activities. Large part of ferrous slag and waste concrete are recycled as construction materials. However, Ca2+ leaching out of ferrous slag and waste concrete in the water-contacting environment can cause a strength change. Strength can be reduced due to the dissolution of solid form of CaO which is one of the main contents of ferrous slag and waste concrete. On the other hand, strength can be enhanced due to the pozzolanic reaction of cementitious components with water. In this study, steelmaking slag, blast furnace slag, and waste concrete were aged by exposure to raining events, and the change of their compaction and shear strength characteristics was investigated. Optimum moisture content of all materials used in this study increased with aging period while maximum dry unit weight slightly decreased, implying that the relative contents of fine particles increased as the CaO solid particles were dissolved. Internal friction angle and shear strength of recycled materials also increased with aging period, indicating that the materials became denser by the decrease of void ratio attributed to the fine particles generated during the weathering process and the development of cementitious compounds increasing the bonding and interlocking forces between the particles. The results of this study demonstrated that mechanical strength of recycled materials used as construction materials has little chance to be deteriorated during their service life.

Fundamental Properties of High Volume Fly Ash Concrete due to Waste Oil Addition (폐유지류 혼입에 따른 플라이애시 다량 치환 콘크리트의 기초적 특성)

  • Kim, Jun-Ho;Hwang, Geum-Gwang;Jo, Man-Gi;Heo, Young-Sun;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.11a
    • /
    • pp.67-69
    • /
    • 2012
  • This paper is to investigate the effect of waste oil on the fundamental properties of high volume fly ash concrete depending on W/B and waste oil contents. Test results reveals that the use of waste oil resulted in an increase of slump and a decrease of air contents due to the presence of emulsion in waste oil. And it is found that the addition of waste oil does not affect the strength development of the concrete significantly.

  • PDF

An Experimental Study on Alkali-Silica Reaction of Mortar Containing Waste Glass and By-products (폐유리 및 산업부산물을 혼입한 모르터의 ASR에 관한 실험적 연구)

  • Lee, Bong-Chun;Kwon, Hyuk-Joon;Kim, Jeong-Hwan;Lee, Jun;Park, Seung-Bum
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.93-98
    • /
    • 2001
  • Using waste glass in concrete can cause crack and strength loss by the expansion of alkali-silica reaction(ASR). In this study, ASR expansion and properties of strength were analyzed in terms of clear waste glass grading, and by-products(fly ash, blast-furnace slag) and by-products content for reduction ASR expansion due to waste glass. In this accelerated ASTM C 1260 test of waste glass, pessimum grading can be found. Also, when the by-products are used with waste glass, there is an effect on reduction of expansion and strength loss due to ASR between the alkali in the cement paste and the silica in the waste glass.

  • PDF

An integral based fuzzy approach to evaluate waste materials for concrete

  • Onat, Onur;Celik, Erkan
    • Smart Structures and Systems
    • /
    • v.19 no.3
    • /
    • pp.323-333
    • /
    • 2017
  • Waste materials in concrete have been considered as one of the most important issues by the authorities, policy makers and researchers to maintain engineering serviceability in terms of economy, durability and sustainability. Therefore, evaluation and selection of waste materials with respect to multi criteria decision making (MCDM) for the construction industry has been gained importance for recovery and reuse. In this paper, Choquet integral based fuzzy approach is proposed for evaluating the most suitable waste materials with respect to compressive strength, tensile strength, flexural strength, compactness, toughness (resistivity for dynamic loads), water absorption and accessibility. On conclusion, waste tyre and silica fume were determined as the most suitable waste materials for concrete production. The obtained results are recommended to assist the authorities on configuring well designed strategies for construction industry with disposal materials.

An Experimental Study on the Properties of Mortar with Powdered Waste Glasses (폐유리 미분말을 혼입한 모르타르의 특성에 관한 실험적 연구)

  • Kim, Ho-Soo;Baek, Chul-Woo;Park, Cho-Bum;Jeun, Jun-Young;Ryu, Deuk-Hyun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.805-808
    • /
    • 2006
  • At the present time, as part of the movement of natural resource conservation, there have been doing many recycling research works for wasted concrete, etc. In this study, we carried out an experiment for using crushed waste glass as a binder. It dealt with comparative analysis of the engineering properties of mortar containing crushed waste glass through a physical experiment. The experimental variables are the crushed waste glass powder substitution ratio(C-type : $0{\sim}25%$, B-type : $0{\sim}50%$, F-type : $0{\sim}100%$). According to this study, As the substitute of waste glass powder increases, air content and unit weight, the compressive strength decreases exactly proportion to the substitute ratio of waste glass powder. if, when waste glass is substituted as the binder, it is necessary to use an admixture.

  • PDF

The Recycling of Waste Asphalt Concrete Mixfure Using a Movable Asphalt Recycling Machine (이동형 아스팔트 재생기를 이용한 페아스팔트 콘크리트 혼합물의 재활용)

  • 박승범;조청휘;김정환
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.1 no.2
    • /
    • pp.75-83
    • /
    • 2000
  • Recently, the quantities of waste asphalt concrete at construction sites have much increased greatly. but maintaining a filling-up and final disposal place is a difficult problem. Therefore, we are faced with a worsening environmental problem brought about present illegal measures. So, safety treatment and recycling of construction waste is a very important question in the Preservation of environmental and natural resources In this study we performed fundamental investigation to manufacture the base recycling asphalt mixture by movable asphalt recycling machine. It contained waste asphalt concrete and recycling agent and its quality was equal to virgin asphalt concrete.

  • PDF