• Title/Summary/Keyword: Concrete Structures

Search Result 6,660, Processing Time 0.029 seconds

Evaluation of Alkali Recovery Agents (알칼리회복제의 성능평가)

  • Lee, Chin-Yong;Kim, Dong-Wan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.637-640
    • /
    • 2006
  • Due to contaminated environment many concrete structures are carbonated. It causes the corrosion of rebar and induces the cracks of concrete, eventually. This study investigates the mechanism and properties of the alkali recovery agents(ARA) which are currently applied for repairing concrete structures on sites. The results indicate that the ARAs are not sufficiently effective to the realkalization of concrete structures.

  • PDF

Temperature Control of Mass-Concrete Structure with Pipe Cooling or Sheet Curing. (시트양생 및 파이프 쿨링에 의한 매스콘크리트 구조물의 온도제어)

  • 차홍윤;김은경;김래현;신치범
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.04a
    • /
    • pp.263-267
    • /
    • 1995
  • The usual methods for the temperature control of mass-concrete structures include the use of low-heat cement, pre-cooling, post-cooling, or sheet curing. In order to control the heat of hydration during the construction of mass-concrete structures, the combination of the above methods is commonly employed. For the construction of mass-concrete structures such as massive pier or anchor, it is necessary to control the curing temperature with pipe cooling. In this study, the method of analysis on the effect of pipe of was proposed to prevent the thermal cracking due to heat of hydration In addition the effect of covering the concrete surface with blanket insulation was investigated. The results of the present study may be useful for the prediction of curing temperature of mass-concrete structures and the reasonable construction management.

  • PDF

Analytical study on the Bond Behavior of FRP Rebar in Concrete (FRP Rebar의 부착거동 해석)

  • You Young-Jun;Park Young-Hwan;Park Ji-Sun;You Young-Chan;Kim Hyeong-Yeol;Kim Keung-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.636-639
    • /
    • 2004
  • Reinforced concrete structures have been used for a long time. However, corrosion problem in reinforcing steel is inevitable, which results in the degradation of performance and the shortening of the life of structures. To overcome such problems, FRP(Fiber Reinforced Polymer) rebars have been developed. Due to their corrosion resistance and their superior mechanical properties, FRP rebars are increasingly applied to concrete structures in other countries. To obtain the composite action between FRP rebars and concrete, sufficient bond between two materials must be secured. But, the behavior of FRP rebars is different from that of steel rebars. Therefore, it is necessary to understand and develop the proper bond mechanism of FRP rebars to use them in concrete structures. This paper presents analytical results to investigate the bond-slip relationship between FRP rebars and concrete based on pull out tests.

  • PDF

Nondestructive Contactless Sensing of Concrete Structures using Air-coupled Sensors

  • Shin, Sung-Woo;Hall, Kerry S.;Popovics, John S.
    • International Journal of Safety
    • /
    • v.7 no.2
    • /
    • pp.17-22
    • /
    • 2008
  • Recent developments in contactless, air-coupled sensing of seismic and ultrasonic waves in concrete structures are presented. Contactless sensing allows for rapid, efficient and consistent data collection over a large volume of material. Two inspection applications are discussed: air-coupled impact-echo scanning of concrete structures using seismically generated waves, and air-coupled imaging of internal damages in concrete using ultrasonic tomography. The first application aims to locate and characterize shallow delamination defects within concrete bridge decks. Impact-echo method is applied to scan defected concrete slabs using air coupled sensors. Next, efforts to apply air-coupled ultrasonic tomography to concrete damage imaging are discussed. Preliminary results are presented for air-coupled ultrasonic tomography applied to solid elements to locate internal defects. The results demonstrate that, with continued development, air-coupled ultrasonic tomography may provide improved evaluation of unseen material defects within structures.

Development of Deterioration Restraining Agent Using Polycondensed Silicate and Monomers (실리케이트와 모노머합성을 통한 콘크리트 열화억제제 개발)

  • Kim, Do-Gyeum;Cho, Myeng-Suk;Song, Young-Chul;Kwak, Ju-Ho;Ryu, Gum-Sung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.563-566
    • /
    • 2005
  • Concrete structures have been damaged by salt, carbonization, freezing and thawing and the others. Therefore, it is needed to protect durability and performance according to the appropriate materials and methods in the concrete structures. In general, several types of polymer and silicate are used as protecting deterioration agents of concrete structures, but these agents have many problems because of low durability and properties. In this study, It developed the deterioration restraining agent using polycondensed silicate and monomer that can block a deterioration cause such as $CO_2$ gas, salt and water from the outside and enhance waterproofing ability by reinforcing the concrete surface when applying it to concrete structures. Also, it developed the systems for improving concrete performance using a deterioration restraining agent.

  • PDF

Reliability-Based Crack Damage Assessment of Reinforced Concrete Bridges (신뢰성에 기초한 콘크리트교량의 균열손상평가)

  • 조효남;최영민;임종권;옥승범
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.10a
    • /
    • pp.334-338
    • /
    • 1995
  • In recent years, the prediction of the deterioration rate of concrete structures has become major research interest. However, there are still many uncertain factors in the deterioration process and the relation between deterioration and durability of structures. This is mainly due to various uncertainties involved in the construction process and the environmental conditions which affect the rate of deterioration of concrete structures. In this study a limit state model in terms of random crack width due to applied dead and live loads is proposed for the assessment of crack damage of reinforced concrete structures. The AFOSM reliability method is used for the reliability evaluation of the crack durability of concrete bridges. The proposed model for crack durability of concrete bridges is applied to the Seoul interior circuit elevated expressway. The sensitivity analyses are performed for the proposed model.

  • PDF

The effect of TiO2 nanoparticles in reduction of environmental pollution in concrete structures

  • Tabatabaei, Javad;Gorji, Leila
    • Advances in concrete construction
    • /
    • v.7 no.2
    • /
    • pp.127-129
    • /
    • 2019
  • Heterogeneous photocatalysis is developed rapidly in the field of engineering of environmental. It has a good potential to tackle with the enhancing traffic pollution. Adding photocatalyst to usual building materials such as cement and concrete makes friendly environmental materials against the air pollution. TiO2 nanoparticles are a good item for concrete structures for diminishing the air polluting affect by gasses of exhaust. In specific, the transformation of NOx to NO3- is studied and the interaction of TiO2 nanoparticles and concrete is investigated here by experimental test. This paper presents an overview of the principle of photocatalysis and the application in combination with cement, as well as the results of the laboratory research, especially towards air purifying action. In addition, by the analytical models, the influence of TiO2 nanoparticles is studied on the stiffness of the concrete. The Results show that TiO2 nanoparticles have significant effect on the reduction of environmental pollution and increase of stiffness in the concrete structures.

Repair and Rehabilitation of Concrete Structures

  • Nagataki Shigeyoshi
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.1-9
    • /
    • 2004
  • Repair of concrete structures has been a focus of attention in recent years not only in Japan but also worldwide. Concrete structures have fallen short of expectations at the time of construction-they should have been perpetual and maintenance-free. However, investigation into their premature deterioration reveals the primary causes: Concrete was made using inadequate materials and/or inadequate mixture proportions due to insufficient consideration and was placed inadequately under insufficient execution control. The secondary causes include insufficient consideration at the time of construction for the environmental conditions to which the structures were to be exposed. In any event, in the current economic climate, structures cannot be demolished and rebuilt as soon as they are damaged, but instead are expected to continue to be in service as long as possible with appropriate repair or retrofitting. This paper analyzes the causes of deterioration requiring repair and introduces relevant repair techniques. At the end, the repair project of the Sanyo Shinkansen Line in which the author was involved through committee activities is reported.

  • PDF

The Study on the design of durability of Concrete in Agricultural Hydraulic Structures (농업용 수리구조물의 내구성 설계방안 연구)

  • Park Kwang Su;Kim Meyong Won;Kim Kwan Ho;Lee Joon Gu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.830-833
    • /
    • 2004
  • Hydraulic structures have been constructed with low cost concrete so as to increase the investment efficiency. But, it has caused to produce structures having excess internal voids inside concrete. As the construction of agricultural irrigation and drainage project is concentrated on off-farming season and scattered in wider area, variation of quality of structures is big and it caused increase of internal voids. Due to that reason, hazardous substance is passing rather freely through the voids causing occur of crack and accordingly life time of structures is getting shortened. It is necessary to make a thesis of design criteria for design strength to increase life time, range of variation of quality, strength of ready-mixed concrete proper to design strength, and water-cement ratio and air content.

  • PDF

Carbonation depth in 57 years old concrete structures

  • Medeiros-Junior, Ronaldo A.;Lima, Maryangela G.;Yazigi, Ricardo;Medeiros, Marcelo H.F.
    • Steel and Composite Structures
    • /
    • v.19 no.4
    • /
    • pp.953-966
    • /
    • 2015
  • Carbonation depth was verified in 40 points of two 57 years old concrete viaducts. Field testing (phenolphthalein spraying) was performed on the structures. Data obtained were statistically analyzed by the Kolmogrov-Smirnov's test, one-way analysis of variance (ANOVA's test), and Fisher's method. The results revealed significant differences between maximum carbonation depths of different elements of the same concrete structure. Significant differences were also found in the carbonation of different concrete structures inserted in the same macroclimate. Microclimatic factors such as temperature and local humidity, sunshine, wind, wetting and drying cycles, among others, may have been responsible by the behavior of carbonation in concrete.