• 제목/요약/키워드: Concrete Shear Strength

검색결과 1,895건 처리시간 0.027초

프리캐스트 Girder-Beam 접합부에서 Girder Ledge의 전단내력에 관한 실험적 연구 (An Experimental Study on Shear Strength of Girder Ledge of Precast Girder-Beam Connection)

  • 배준우;박성무
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1996년도 가을 학술발표회 논문집
    • /
    • pp.408-415
    • /
    • 1996
  • This study is aimed to define the behavior of the girder ledge of precast girder-beam joint in rame type precast concrete construction method. The variable of this study is followed : 1) The change of the maximum shear strength depended on the transformation of concrete compressive strength 2) The change of the behavior of ledge depended on the transformation of shear-span ratio 3) The change of maximum shear strength and ductility by the type of reinforcement. The results of this study show the behavior of ledge is affected by shear-span ratio and the maximum shear strength is depended on the concrete compressive strength, reinforcement ratio and effective section area. In addition, through the investigation of the established study, the results of this study suggest the shear friction formula of Raths.

  • PDF

고강도 철근콘크리트 보의 전단거동에 관한 실험적 연구 (An Experimental Study on Shear Behaviour of Reinforced High Strength Concrete Beams)

  • 곽계환;고갑수;곽경헌
    • 한국농공학회지
    • /
    • 제38권3호
    • /
    • pp.58-69
    • /
    • 1996
  • In recent years, the research and development about the new material proceeds rapidly and actively. In building industry, high strength concrete is of interest as a new material. Since the building structure becomes bigger, higher and more specialized, the demand of material and member with high strength expands greatly. Therefore in this experiment, cement complex with high strength was made using the condensed silica fume, a basic experiment was performed on strength property, and optimum-mixture-state was determined for manufacturing a high-strength concrete. Shear behaviour and fracture property of concrete beams with high strength were evaluated. On the whole, in spite of many researches, it is one of the difficult problems that shear fracture of concrete beams has not yet been clearly understood theoretically, and now the shear-design-standard forms in many countries are a formula based on experiment. In this study, the variable of shear behavior experiment was shear-reinforcement-ratio. By analyzing test results and comparing with computation value by ACI code, the basic data was offered on shear design of reinforced concrete beams with high strength. The effect of epoxy repair was also investigated for the beams with cracks due to flexural and shear loading.

  • PDF

Direct Shear Test of Retrofit Anchors Using Deformed Reinforcement and Adhesive

  • Choi, Dong-Uk;Kim, Yong-Gon
    • KCI Concrete Journal
    • /
    • 제12권1호
    • /
    • pp.91-99
    • /
    • 2000
  • A new type of retrof=t anchor bolt that uses deformed reinforcing bars and a commercial adhesive was developed and then an experimental study was carried out to determine the behavior of the anchors in direct shear. The steel-to-concl몫ete interface was tested. Plain concrete slabs with about 20-MPa compressive strength were used for 23 direct shear tests performed Test variables were anchor diameters (D16, D22. and D29) and edge effect. Three different shear tests were completed: simple shear, edge shear where anchors were pulled against the concrete core, and edge shear where anchors were pushed against the concrete cover In the simple and the edge shear tests where the anchors were pulled against the core, the theoretical dowel strength determined by (equation omitted) was achieved but with relatively large displacements. The shear resistances increased with the increasing displacements. In the edge shear test where the anchors were pushrd against the cover, the peak shear strengths signif=cantly lower than the theoretical dowel strength were determined due to cracks developed in concrete when the edge distance was 80 mm. The peak strengths were about 50% of the dowel strength for Dl6 bar. and about 25% or less of the dowel strength for D22 and D29 bars. Test results revealed that the edge shear where the anchor was pushed against the cover controled.

  • PDF

Shear resistance of stud connectors in high strength concrete

  • Lee, Young Hak;Kim, Min Sook;Kim, Heecheul;Kim, Dae-Jin
    • Structural Engineering and Mechanics
    • /
    • 제52권4호
    • /
    • pp.647-661
    • /
    • 2014
  • The use of steel-concrete composite members has been significantly increased as they have the advantages of the reduction of cross sectional areas, excellent ductility against earthquake loadings and a longer life span than typical steel frame members. The increased use of composite members requires an intensive study on the shear resistance evaluation of stud connectors in high strength concrete. However, the applicability of currently available standards is limited to composite members with normal and lightweight strength concrete. In this paper, push-out tests were performed on 24 specimens to investigate the structural behavior and shear resistance of stud connectors in high strength concrete. Test parameters include the existence of shear studs, height to diameter ratio of a shear stud, its diameter and concrete cover thickness. A shear resistance equation of stud connectors is proposed through a linear regression analysis based on the test results. Its accuracy is compared with those of existing shear resistance equations for studs in normal and lightweight concrete.

석탄회 인공경량골재를 사용한 고강도 콘크리트 보의 전단성능 (Shear Performance of High-Strength Reinforced Concrete Beams using Fly-Ash Artificial Lightweight Aggregate)

  • 정수영;윤현도;박완신
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제6권4호
    • /
    • pp.233-242
    • /
    • 2002
  • This study is to investigate experimentally the shear capacity of high-strength lightweight-aggregate reinforced concrete beams subjected to monotonic loading. Ten beams made of fly-ash artificial lightweight high-strength concrete were tested to determine their diagonal cracking and ultimate shear capacities. The variables in the test program were longitudinal reinforcement ratio; which variabled (between 0.83 and 1.66 percent), shear span-to-depth ratio (a/d=1.5, 2.5 and 3.5), and web reinforcement(0, 0.137, 0.275 and 0.554 percent). Six of the test beams had no web reinforcement and the other six had web reinforcement along the entire length of the beam. Most of beams failed brittly by distinct diagonal shear crack, and have reserved shear strength due to the lack of additional resisting effect by aggregate interlocking action after diagonal cracking. Test results indicate that the ACI Building Code predictions of Eq. (11-3) and (11-5) for lightweight concretes are unconservative for beams with tensile steel ratio of 1.66, a/d ratios greater than 2.5 without web reinforcement. Through a more rational approach to compute the contribution of concrete to the shear capacity, a postcracking shear strength in concrete is observed.

Static behavior of high strength friction-grip bolt shear connectors in composite beams

  • Xing, Ying;Liu, Yanbin;Shi, Caijun;Wang, Zhipeng;Guo, Qi;Jiao, Jinfeng
    • Steel and Composite Structures
    • /
    • 제42권3호
    • /
    • pp.407-426
    • /
    • 2022
  • Superior to traditional welded studs, high strength friction-grip bolted shear connectors facilitate the assembling and demounting of the composite members, which maximizes the potential for efficiency in the construction and retrofitting of new and old structures respectively. Hence, it is necessary to investigate the structural properties of high strength friction-grip bolts used in steel concrete composite beams. By means of push-out tests, an experimental study was conducted on post-installed high strength friction-grip bolts, considering the effects of different bolt size, concrete strength, bolt tensile strength and bolt pretension. The test results showed that bolt shear fracture was the dominant failure mode of all specimens. Based on the load-slip curves, uplifting curves and bolt tensile force curves between the precast concrete slab and steel beam obtained by push-out tests, the anti-slip performance of steel-concrete interface and shear behavior of bolt shank were studied, including the quantitative analysis of anti-slip load, and anti-slip stiffness, frictional coefficient, shear stiffness of bolt shank and ultimate shear capacity. Meanwhile, the interfacial anti-slip stiffness and shear stiffness of bolt shank were defined reasonably. In addition, a total of 56 push-out finite element models verified by the experimental results were also developed, and used to conduct parametric analyses for investigating the shear behavior of high-strength bolted shear connectors in steel-concrete composite beams. Finally, on ground of the test results and finite element simulation analysis, a new design formula for predicting shear capacity was proposed by nonlinear fitting, considering the bolt diameter, concrete strength and bolt tensile strength. Comparison of the calculated value from proposed formula and test results given in the relevant references indicated that the proposed formulas can give a reasonable prediction.

Belite 시멘트를 사용한 고강도 철근콘크리트 보의 전단거동에 관한 실험연구 (An Experimental Study on the Shear Behavior of Reinforced High-Strength Concrete Beams with Belite Cement)

  • 한상훈;구봉근;김동석;강지훈;이상근;홍기남
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 봄 학술발표회논문집(II)
    • /
    • pp.463-468
    • /
    • 1998
  • This paper presents the shear behavior in reinforced normal and high-strength concrete beams with Belite cement due to the increase of concrete compressive strength. The shear tests were conducted on thirty two beam specimens having concrete compressive strengths of 350 and 600kg/$\textrm{cm}^2$. The major experimental variables are compressive strength of concrete, shear span to depth ratio, and shear reinforcement ratio. The shear responses as to each variable are discussed in terms of shear capacity. The comparison of prediction equations with test results is also presented.

  • PDF

스터럽이 없는 철근콘크리트 보의 전단강도에서의 크기효과 (Size Effects in Shear Strength of Reinforced Concrete Beams without Web Reinforcement)

  • 송하원;하주형;변근주
    • 콘크리트학회지
    • /
    • 제10권6호
    • /
    • pp.179-190
    • /
    • 1998
  • 철근콘크리트보의 전단파괴는 급작스런 취성파괴 때문에 중요한 문제이며, 많은 실험결과들에 의하면 철근콘크리트 보의 전단강도에서의 크기효과는 철근콘크리트 부재의 중요한 특징임이 밝혀졌다. 철근콘크리트보의 크기가 점점 커짐에 따라 실험이 매우 어려워져 전단강도에대한 실험데이타나 경험공식을 얻기가 힘들어지며 이에 다른 철근콘크리트 보의전단강도의 크기효과에 대한 수치해석적 방법이 매우 중요하게 되었다. 본 연구에서는 스터럽이 없는 철근콘크리트보의 전단해석에 유한요소해석기법을 적용하였고 전단강도에대한 크기효과를 해석적으로 분석하였다. 또한 철근콘크리트 보의 전단강도에대한 크기효과에 영향을 주는 인자를 분석하였으며 영향인자를 몇몇 표준시방서를 포함한 주요 전단강도식과 비교하였다.

Shear behavior of short square tubed steel reinforced concrete columns with high-strength concrete

  • Li, Xiang;Zhou, Xuhong;Liu, Jiepeng;Wang, Xuanding
    • Steel and Composite Structures
    • /
    • 제32권3호
    • /
    • pp.411-422
    • /
    • 2019
  • Six shear-critical square tubed steel reinforced concrete (TSRC) columns using the high-strength concrete ($f_{cu,150}=86.6MPa$) were tested under constant axial and lateral cyclic loads. The height-to-depth ratio of the short column specimens was specified as 2.6, and the axial load ratio and the number of shear studs on the steel shape were considered as two main parameters. The shear failure mode of short square TSRC columns was observed from the test. The steel tube with diagonal stiffener plates provided effective confinement to the concrete core, while welding shear studs on the steel section appeared not significantly enhancing the seismic behavior of short square TRSC columns. Specimens with higher axial load ratio showed higher lateral stiffness and shear strength but worse ductility. A modified ACI design method is proposed to calculate the nominal shear strength, which agrees well with the test database containing ten short square TSRC columns with shear failure mode from this study and other related literature.

고강도 철근콘크리트 깊은 보의 전단거동 및 ACI 전단설계 기준과의 비교 (Shear Behavior of High-Strength Concrete Deep Beams and Comparisons with ACI Shear Design Provisions)

  • 정헌수;양근혁;함영삼
    • 콘크리트학회논문집
    • /
    • 제14권6호
    • /
    • pp.874-882
    • /
    • 2002
  • 현재, 깊은 보의 전단설계는 보통강도 콘크리트를 사용한 일반 보의 사인장 균열내력에 대한 실험식인 ACI 기준에 기본을 두고 시행되고 있지만, 고강도 철근콘크리트 깊은 보의 전단거동에 대한 자료는 매우 제한적이다. 따라서, 본 실험연구의 목적은 고강도 철근콘크리트 깊은 보의 전단거동을 이해하고 ACI 설계 기준의 안전율을 파악하기 위한 것이다. 상부 2점 대칭하중을 받는 22개의 고강도 콘크리트 깊은 보의 전단내력에 대한 실험결과를 나타내었다. 콘크리트 압축강도는 800kgf/$\textrm{cm}^2$이며, 주요 변수로는 전단경간비, 전단철근의 양 및 배근 형태 등이다. 실험결과로부터 전단철근의 전단저항에 대한 효율성은 ACI 기준에서 제시하는 순 경간깊이비(1n/d) 보다는 전단경간비가 크게 관계되었으며 전단경간비가 0.75 이상에서 수직 전단철근이 수평 전단철근보다 전단저항에 더 효율적이었다. 고강도 철근콘크리트 깊은 보의 전단내력을 예측하기 위하여 실험결과들과 전단마찰이론에 근거해서 ACI 기준식을 수정, 제시하였다.