• Title/Summary/Keyword: Concrete Mixing

Search Result 1,008, Processing Time 0.034 seconds

Evaluation of Bonding Performance in UHPC-based Concrete Repair Materials Considering Surface of Structure Subject to Repair (보수대상 구조 표면 상태를 고려한 UHPC 기반 콘크리트 보수재료의 부착 성능 평가)

  • Yong-Sik Yoon;Kyong-Chul Kim;Kwang-Mo Lim;Gi-Hong An;Gum-Sung Ryu;Kyung-Taek Koh
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.433-439
    • /
    • 2023
  • In this study, the bonding performance of repair materials was evaluated on concrete repair surface to develop concrete repair materials based on UHPC (Ultra High Performance Concrete) which has high mechanical and durability performance. The ten test variables were applied considering the roughness and wet condition of the concrete surface subject to repair, the addition of polymer, and the use PP and PVA fibers in repair materials. The addition of the polymer caused a significant decrease in strength, which was thought to be due to the effect of the additional super plasticizer used to adjust workability. Also, flow was reduced by up to 13.8 % with the use of plastic-based fibers. As a result of evaluating the bond strength of the repair material considering the condition of the surface subject to repair, it was thought that in the case of using UHPC-based repair material, high bonding performance could be secured without any additional surface treatment as long as the surface of the base material was sound. In addition, UHPC-based repair materials showed high bonding performance even when the attachment surface was wet. In the future, research will be conducted on shot-crete application and gradient pouring for the development of UHPC-based repair materials, and continuous improvement in the repair material mixing property will be carried out to ensure economic efficiency and performance as a concrete structural repair material.

Evaluation of Chloride and Chemical Resistance of High Performance Mortar Mixed with Mineral Admixture (광물성 혼화재료를 혼입한 고성능 모르타르의 염해 및 화학저항성 평가)

  • Lee, Kyeo-Re;Han, Seung-Yeon;Choi, Sung-Yong;Yun, Kyong-Ku
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.618-625
    • /
    • 2018
  • With the passing of time, exposed concrete structures are affected by a range of environmental, chemical, and physical factors. These factors seep into the concrete and have a deleterious influence compared to the initial performance. The importance of identifying and preventing further performance degradation due to the occurrence of deterioration has been greatly emphasized. In recent years, evaluations of the target life have attracted increasing interest. During the freezing-melting effect, a part of the concrete undergoes swelling and shrinking repeatedly. At these times, chloride ions present in seawater penetrate into the concrete, and accelerate the deterioration due to the corrosion of reinforced bars in the concrete structures. For that reason, concrete structures located onshore with a freezing-melting effect are more prone to this type of deterioration than inland structures. The aim of this study was to develop a high performance mortar mixed with a mineral admixture for the durability properties of concrete structures near sea water. In addition, experimental studies were carried out on the strength and durability of mortar. The mixing ratio of the silica fume and meta kaolin was 3, 7 and 10 %, respectively. Furthermore, the ultra-fine fly ash was mixed at 5, 10, 15, and 20%. The mortar specimens prepared by mixing the admixtures were subjected to a static strength test on the 1st and 28th days of age and degradation acceleration tests, such as the chloride ion penetration resistance test, sulfuric acid resistance test, and salt resistant test, were carried out at 28 days of age. The chloride diffusion coefficient was calculated from a series of rapid chloride penetration tests, and used to estimate the life time against corrosion due to chloride ion penetration according to the KCI, ACI, and FIB codes. The life time of mortar with 10% meta kaolin was the longest with a service life of approximately 470 years according to the KCI code.

Mechanical Properties of Granite Soil Concrete with Polypropylene Fiber (폴리프로필렌 섬유보강 화강토 콘크리트의 역학적 특성)

  • Nam, Ki Sung;Jun, Hyung Soon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.1
    • /
    • pp.1-8
    • /
    • 2013
  • This study will not only prove experimental dynamic properties which are classified to slump, compressive strength, tensile strength, flexure strength and toughness granite soil concrete with a fine aggregate of granite soil and blast-furnace cement and polypropylene fiber over 45 mm, but also establish a basic data in order to use environment-friendly pavement through prove useful pavement mixed with granite and polypropylene (PP) fiber which is a kind of material to prevent a dry shrinkage clack, a partial destruction and useful and light. The value of slump test was gradually increased by PP fiber volume 3 $kgf/m^3$, but compressive strength took a sudden turn for the worse from 5 $kgf/m^3$. The compressive strength indicated a range of 13.72~18.35 MPa. On the contrary to compressive strength, the tensile strength showed to decrease with rising PP fiber volume, and the tensile strength indicated a range of 1.43~1.64 MPa. The tensile strength was stronger about 2~15 % in case of mixing with PP fiber volume than normal concrete. The flexural strength indicated a range of 2.76~3.41 MPa. The flexural strength was stronger about 20 % in case of PP fiber volume 0 $kg/m^3$ than PP fiber volume 9 $kg/m^3$. The toughness indicated a range of 0~25.46 $N{\cdot}mm$ and increased proportionally with PP fiber volume. The toughness was stronger about 8.3 times in case of PP fiber volume 9 $kg/m^3$ than PP fiber volume 1 $kg/m^3$. The pavement with PP fiber volume over such a fixed quantity in the park roads and walkways can have a effect to prevent not only resistance against clack but also rip off failures.

Effect of Superplasticizers and Admixtures on the Fluidity and Compressive Strength Development of Cementless Mortar Using Hwangtoh Binder (혼화제·재가 무시멘트 황토 모르타르의 유동성 및 압축강도 발현에 미치는 영향)

  • Yang, Keun-Hyeok;Hwang, Hey-Zoo;Kim, Sun-Young;Song, Jin-Gyu
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.6 s.96
    • /
    • pp.793-800
    • /
    • 2006
  • This paper reports test results to assess the influence of superplasticizers and different admixture on the flow and compressive strength development of cementless mortar using developed hwangtoh binder. Test specimens were classified into four groups: series for I the mixing ratio of superplasticizers, series II for a kind and replacement level of admixtures according to the variation of water/hwangtoh binder ratio, series III for the specific surface area and replacement level of ground granulated blast-furnace slag and series IV for the replacement level of powered superplasticizer agent developed to improve slump loss of concrete. The proper replacement level of each admixture is proposed for enhancement the flow and compressive strength of the hwangtoh binder mortar.

An Experimental Study on Fundamental Quality Properties of Basalt Fiber Reinforced Mortar according to Application of High Volume Fly Ash (바잘트 섬유보강 모르타르의 하이볼륨 플라이애시 적용에 따른 기초 품질 특성에 관한 실험적 연구)

  • Choi, Yun-Wang;Oh, Sung-Rok;Choi, Byung Keol
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.4
    • /
    • pp.387-394
    • /
    • 2016
  • This study was evaluated that fundamental quality properties in the mortar level, as part of a basic study for development of fiber reinforced concrete using basalt fiber. Mortar mixtures used in the experiments used the mortar using cement only and high volume fly ash mortar using fly ash of 50%, was evaluated by comparison. As a experiments results, high volume fly ash mortar using 50% fly ash was effective for improving fiber dispersibility than mortar using cement only, accordingly, it showed that fiber aggregation phenomenon has been greatly reduced. In addition, if the fly ash used much more than 50%, the compressive strength has been shown to decrease of about 30%, fiber length and mixing ratio of basalt fiber was found to have a greater effect on flow properties than mechanical properties.

An Experimental Study on the Thermal Property of Concrete under the Load Ratio Condition in Fire (고온화재조건 콘크리트 라이닝의 하중비에 따른 폭렬영향성 및 화재손상특성에 관한 실험적 연구)

  • Kim, Hyung-Jun;Kim, Heung-Youl;Park, Kyung-Hun;Ahn, Chan-Sol;Kwon, Ki-Hyuk
    • Fire Science and Engineering
    • /
    • v.24 no.3
    • /
    • pp.145-151
    • /
    • 2010
  • The fire in tunnel, when failed to extinguish at early stage, tends to easily develop to high temperature and spread to entire area of the tunnel because of considerable level of fire load and smoke control facility within the tunnel, resulting in severe damage to the people and tunnel structure. This study was intended to carry out the fire test with MHC fire curve, a scenario, which has the most rapid fire rise, on assumption of load ratio of 1, 20, 40, 60 and 70%, so as to identify the thermal characteristics of the concrete against spalling and the range of fire damage. The specimen was small scale sample as defined by EFNARC and the mixing ratio was based on 24 MPa, which is considered to be the normal strength. As a result of test, 16mm spalling was occurred on the lining under the non-load condition, while no spalling was occurred with 20% and 40% of load ratio. In case of 60% of load ratio, 24 mm of spalling was occurred and it failed in 10 minutes after heating in case of 70% load condition.

Fundamental Properties of Concrete Using Liquid Type High Early Strength Agent with Water to Binder Ratio (물결합재비 변화에 따른 액상형 조강제를 사용한 콘크리트의 기초적 특성)

  • Noh, Sang-Kyun;Oh, Sang-Baek;Lee, Gun-Cheol;Lee, Mun-Hwan;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2007.11a
    • /
    • pp.57-60
    • /
    • 2007
  • This study is to discuss the effect of the liquid type high early strength agent considering early strength, developing strength, and economics of the concrete using admixtures. The powder type high early strength agent does not helpful because the field application is not available such as the problem of mixing process and rack of economics. To make up these subjects, the plain mixture contains the standard type AE water reducing agent, and the types of the agents are the standard type AE water reducing agent(P),liquid type high early strength agent(AD),poly carboxylate high early strength type AE water reducing agent(E1), and naphthalene + melamine high early strength type AE water reducing agent(E2). As the Contents of the agents, E1 and E2 is two types each cases, and P is one type to satisfy the target fluidity and air content, AD is three types as 0.5, 1.0,and 1.5%. In the case that AD is mixed, the fluidity is decreased, but air content is increased. For increasing strength of the early age, using OPC is more effective than FA and BS for increasing the early strength of the concrete, and if the air content is secure as plain, the effect of the developing strength can be increased because the air content is increased about 2% in the case that AD is used.

  • PDF

Application of Precast Concrete Products of Non-Sintered Cement Mortar based on Industrial by-Products (산업부산물을 이용한 비소성 시멘트 모르타르의 프리캐스트콘크리트 제품 적용성 평가)

  • Na, Hyeong-Won;Moon, Kyoung-Ju;Hyung, Won-Gil
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.1
    • /
    • pp.19-26
    • /
    • 2020
  • This study aimed to develop non-sintered cement that could replace portland cement which emits large amount of carbon dioxide during firing process. For this purpose, ground granulated blast furnace slag, type c fly ash and slaked lime were used. In addition, through the experimental results, the characteristics of the non-sintered cement binders according to the mixing ratios will be identified, and the utilization plans for the precast concrete products will be presented. In this experiment, non-sintered cement binders using industrial by-products were prepared to compare the flexural strength and compressive strength of each of the 3, 7 and 28 days. As a result, the results satisfy the KS of the target product proposed in this study. Therefore, this study presents the possibility of using precast concrete products by developing non-sintered cement binders using industrial by-products.

Effect of accelerators with waste material on the properties of cement paste and mortar

  • Devi, Kiran;Saini, Babita;Aggarwal, Paratibha
    • Computers and Concrete
    • /
    • v.22 no.2
    • /
    • pp.153-159
    • /
    • 2018
  • Accelerators are used to speed up the construction by accelerating the setting time which helps in early removal of formwork thus leading to faster construction rate. Admixtures are used in mortar and concrete during or after mixing to improve certain properties of material which cannot be achieved in conventional cement mortar and concrete. The various industrial by products make nuisance and are hazardous to ecosystem as well. These wastes can be used in the construction industries to reduce the consumption of cement/aggregates, cost; and save the energy and environment by utilising waste and eliminate their disposal problem as well. The effect of calcium nitrate and triethanolamine (TEA) as accelerators and marble powder (MP) as waste material on the various properties of cement paste and mortar has been studied in the present work. The replacement ratio of MP was 0-10% @ 2.5% by weight of cement. The addition of calcium nitrate was 0% and 1%; and variation of addition of TEA was 0-0.1@ 0.025% and 0.1-1.0@ 0.1% by weight of cement. On the basis of setting time, some mix proportions were selected and further investigated. Setting time and soundness of cement paste; compressive strength and microstructure of mortar mix of selected mix proportions were studied experimentally at 3, 7 and 28 days aging. Results showed that use of MP, calcium nitrate, TEA and their combination reduced setting time of cement paste for all the mixes. Addition of calcium nitrate increased the compressive strength at all curing ages while MP and TEA decreased the compressive strength. The mechanism of additives was discussed through scanning electron microscope (SEM) and energy dispersive X-ray spectroscopy (EDS) analysis of the specimens.

Effect Analysis of Mix Designing Factors on Workability and Rheological Parameters of Self-Compacting Concrete (배합요인이 자기충전 콘크리트의 워커빌리티 및 레올로지 파라미터에 미치는 영향 분석)

  • Yoon, Seob;Han, Min-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.3
    • /
    • pp.235-242
    • /
    • 2018
  • The objective of the paper is to investigate the effect of mix designing factors on the workability and rheological parameters of self compacting concrete in order to facilitate the difficulties of quality control of high sensitivity of SCC. Mix proportions of SCC were prepared with various conditions of coarse, and fine aggregate, and unit water content, and the SCC mixtures were tested on workability, rheological properties to provide basic data for quantitative evaluation. Test results indicated that the yield stress of SCC decreased with increasing the coarse aggregate volume ratio, and increased with increasing the amount of VMA. However, unit water content, fine aggregate type, and air content didn't affect the yield stress value. The plastic viscosity according to the mixing factors showed a similar tendency to the yield stress. In addition, there was no correlation between yield stress and workability (flow, T50, V-lot). However, there was closely correlation among plastic viscosity and T50 and V-lot. Especially, T50 and V-lot time decreased with decreasing plastic viscosity.