• Title/Summary/Keyword: Concrete Mixing

Search Result 1,008, Processing Time 0.026 seconds

A Study on Shear-Fatigue Behavior of New Polymer Reinforced Concrete Beams (신(新)폴리머 철근(鐵筋)콘크리트보의 전단피로(剪斷疲勞) 거동(擧動)에 관(關)한 연구(研究))

  • Kwak, Kae Hwan;Park, Jong Gun;Jang, Ki Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.3
    • /
    • pp.35-44
    • /
    • 1993
  • The objective of this study is aimed at developing a new class of polymer concrete, in which hydration of cement and curing of a thermosetting resin can take place simultaneously during the mixing of concrete components. For the selected mix-proportion of the new polymer, the physical and mechanical properties needed for designs are presented. These important properties are compressive strength, flexural strength, split tensile strength, direct strength, fatigue characteristics and fracture parameters. The observed properties are always compared with conventional concrete to serve as reference for engineer in deciding or selecting the proper materials for their projects, and shore protecting structure.

  • PDF

Influence of Fine Aggregate Kinds on Fundamental Properties of Cement Mortar (잔골재 종류변화가 시멘트 모르터의 기초적 특성에 미치는 영향)

  • Kim, Seong-Hwan;Pei, Chang-Chun;Song, Seung-Heon;Cha, Cheon-Soo;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2006.05a
    • /
    • pp.85-88
    • /
    • 2006
  • This study investigated influence of fine aggregate types on fundamental properties of cement mortar. Test showed that concrete using lime stone crushed fine aggregate(L) exhibited the most favorable fluidity due to grain shape and particle distribution, and next was blending aggregate miting L and G, blending aggregate mixing L and N, granite crushed fine aggregate(G), natural fine aggregate(N) in an order. Concrete using N had the highest air content and L was the smallest value because of the effective filling performance by continuos particle distribution. Compressive, tensile and flexural strength of all concrete using L had the highest value due to the smallest value of air content. It is also found that concrete using L resulted in decrease of drying shrinkage length change ratio.

  • PDF

Applications and Analysis of Exterior Paints for the Curtain Wall Panel System based on the Autoclaved Lightweight Concrete(ALC) (경량기포콘크리트(ALC) 패널을 건축물 외장 커튼월에 적용을 위한 도료의 기초적 연구)

  • Lee, Yong-Soo;La, Hyun-Ju
    • Journal of The Korean Digital Architecture Interior Association
    • /
    • v.12 no.3
    • /
    • pp.59-66
    • /
    • 2012
  • Autoclaved Lightweight Concrete(ALC) features such as a high performance insulation, the fire resistance, the advantage of easy handing construction, and lightweight panels applied the curtain wall system. ALC materials are certified as non-toxic environmental and eco-friendly productions. But ALC external panels mixed with blast furnace slag pounder and silica fume have to be coated with a stucco compound or plaster because of resisting the ambient environment. This study is that mixing tests to evaluate a performance analysis of exterior paints to be make-up pigments(organic or inorganic) coated with panel surface. Testing compared by KS F 2476; flow test, KS F 2426; compression strength test, KS F 2762; bond strength test. In results, the case of the inorganic binder, ratio of alumina cement : anhydrite is 90:10 to 80:20 at the highest level of intensity. In the case of the organic binder, adhesive strength rating at surface of ALC, the pullout strength is below 0.5 $N/mm^2$ but the normal concrete is over 2.0$N/mm^2$. A contents ratio of EVA resin is more than 3% and then bond strength is effectively.

Evaluation of RFID System for Location Based Services in the Building (건물 내의 위치기반 서비스를 위한 RFID 시스템)

  • Nam, Sang-Yep;An, Jin-Ung;Kim, Dong-Han
    • 전자공학회논문지 IE
    • /
    • v.48 no.1
    • /
    • pp.45-50
    • /
    • 2011
  • In this paper, different RFID tag types compliant with UHF frequency based RFID system were chosen to build RFID tag embedded concrete blocks. Then, by placing the tags in systematically varied depths of a concrete block, we could measure the RF signal attenuation pattern as the performance indicator of a specific concrete embedded RFID system. Experiments show that the concrete mixing ratio makes no significant difference in tag detection performance level. The significance of the developed RFID system lies in its capability of eliminating GPS's error and shadow area as well as providing smart infrastructure for supporting truly pervasive ubiquitous computing applications especially in outdoor environment.

The Effects of Fine Particle Cement on the Quality of Fly Ash Concrete (플라이애시 사용 콘크리트의 품질에 미치는 미분시멘트의 영향)

  • Lee, Joung-Ah;Joeon, Kyu-Nam;Baek, Dae-Hyun;Park, Jong-Ho;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.05b
    • /
    • pp.113-117
    • /
    • 2009
  • Fly ash (called FA hereafter) that results from thermal power plants is a long-term strength improving substance with reactivity to pozzolan and has been used for long. However, large amount of FA shows many advantages such as reduction of hydratio energy, long-term improvement in strength and economic feasibility and also has difficulties from reduction in initial strength and durability. In a preceding study, fine particle cement was applied to test the effects on initial strength. Therefore in this study, the effects of fine particle cement on the quality of FA concrete were reviewed. The results can be summarized as follows. Liquidity was increased by the most at FC substitution ratio of 15%. Air capacity was reduced according to increasing substitution ratio of FA and FC. Compressive strength showed high strength expression at all ages when FC was substituted at 45%. Synthesizing the above results, appropriate mixing of FC in FA concrete can improve liquidity, reduce unit quantity and show improvement in strength. In particular, mixed use of FC seems effective in improving early quality of concrete.

  • PDF

Laboratory investigations on the effects of acid attack on concrete containing portland cement partially replaced with ambient-cured alkali-activated binders

  • Ramagiri, Kruthi K.;Patil, Swaraj;Mundra, Harsh;Kar, Arkamitra
    • Advances in concrete construction
    • /
    • v.10 no.3
    • /
    • pp.221-236
    • /
    • 2020
  • To reduce the CO2 emissions associated with the manufacture of portland cement (PC), an efficient alternative like an alkali-activated binder (AAB) is the requirement of the industry. To promote the use of AAB in construction activities, a practically implementable mix proportion is required. Owing to the several raw ingredients of AAB concrete and their associated uncertainties, partial replacement of PC by AAB may be adopted instead of complete replacement as per industrial requirements. Hence, the present study aims to determine an optimal proportion for partial replacement of PC with AAB and recommend a technique for it based on site conditions. Three modes of partial replacement are followed: combining all the dry ingredients for AAB and PC followed by the addition of the requisite liquids (PAM); combining the PC and the AAB concrete in two horizontal layers (PAH); and two vertical layers (PAV). 28-day old specimens are exposed to 10% v/v solutions of HCl, H2SO4, and HNO3 to evaluate changes in mechanical, physical, and microstructural characteristics through compressive strength, corrosion depth, and microscopy. Based on deterioration in strength and integrity, PAH or PAV can be adopted in absence of acid attack, whereas PAM is recommended in presence of acid attack.

Shell forms for egg-shaped concrete sludge digesters: A comparative study on structural efficiency

  • Zingoni, A.
    • Structural Engineering and Mechanics
    • /
    • v.19 no.3
    • /
    • pp.321-336
    • /
    • 2005
  • The structural feasibility of a variety of non-conventional sludge digesters, in the form of thin shells of revolution constructed in concrete, has formed the subject of investigation of a recent programme of research at the University of Cape Town. Such forms are usually known in the literature as "egg-shaped", and the advantages of these over conventional digesters of the wide-cylindrical type are now well-recognised: superior mixing efficiency, less accumulation of deposits at the bottom, easier removal of bottom deposits and surface crust, reduced heat losses, and so forth. With the aim of exploring the structural feasibility of various non-conventional forms for concrete sludge digesters, and making available usable analytical data and practical guidelines for the design of such thin shell structures, a number of theoretical studies have recently been undertaken, and these have covered conical assemblies, spherical assemblies and parabolic ogival configurations. The purpose of the present paper is to bring together the different analytical approaches employed in each of these studies, summarise the main findings in each case, draw comparisons among the various studied configurations with regard to structural efficiency and functional suitability, and make appropriate conclusions and recommendations.

Effects of activated carbon on the compressive strength of Portland cement concrete

  • Sungmin Youn;Andrew Ball;Claire Fulks;Sanghoon Lee;Sukjoon Na
    • Geomechanics and Engineering
    • /
    • v.33 no.1
    • /
    • pp.19-27
    • /
    • 2023
  • A series of experiments were performed to evaluate the effects of activated carbon on the compressive strength and air content of Portland Cement Concrete (PCC). Activated carbon/PCC composites were prepared by mixing concrete components with commercial activated carbon granules with weight fractions of 0, 0.5%, 1%, and 2% to cement. All PCC specimens were then tested for compressive strength on 7, 14, 21, and 28 days. The experimental results showed that adding 0.5% of activated carbon increased the compressive strength significantly over the curing periods compared to the normal PCC without activated carbon. For the specimens has 0.5% activated carbon, the 7, 14, 21, and 28-day compressive strengths increased by 28.7%, 22.2%, 26.8%, and 22.9%, respectively. However, adding excessive amounts of more than 1% activated carbon had a minimal effect on the compressive strength or even decreased it, which agrees with other studies. Regarding the air contents of the mixtures, adding activated carbon decreased the air content from 3.6% to around 1.5%. The surface morphologies of fine aggregates and activated carbon particles were compared using a novel image processing technique. The results indicated that the surface of activated carbon significantly differs from that of aggregates.

Performance Evaluation of Nitrogen Oxide Removal by Air Purification Blocks with Titanium Dioxide (이산화티타늄을 이용한 대기정화 블록의 질소산화물 제거 성능 평가)

  • Oh, Ri-On;Kim, Hwang-Hee;Park, Sung-Ki;Cha, Sang-Sun;Park, Chan-Gi
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.5
    • /
    • pp.39-46
    • /
    • 2020
  • This study evaluated the nitrogen oxide (NOx) removal efficiency by air purification concrete blocks with titanium dioxide (TiO2). The concrete in the mixtures had a 30% water:cement ratio, to which TiO2 was added at 0%, 5%, and 10% of cement weight. The compressive strength reduction rate and removal efficiency of NOx were investigated. The result of the compressive strength test in the study indicated that addition rate of TiO2 did not lead to signifcant effect. In terms of the average removal efficiency of NOx, mix No. 1 using a TiO2 mixing ratio of 0% had a removal efficiency of 0.57% on average; thus, the removal effect w as not significant. For the other samples prepared by mixing, the average removal efficiencies for mix No. 2 (5% TiO2) were 58.86% and 62.05% for normal and washing surface treatments, respectively, and those of sample No. 3 (10% TiO2) were 59.94% and 67.61%. mixs No. 4 (5%) and No. 5 (10%), in which TiO2 diluted with distilled water was sprayed onto the block surface, had an average NOx removal efficiency of 61.72% and 68.48%, respectively. In terms of NOx removal efficiency, Mixs No. 3 and No. 5 with 10% TiO2 were better than Mixs No. 2 and No. 4 with 5% TiO2. In addition, analyzing the NOx removal efficiency results from the fixing method, it was capable to apply mixing (washing) and the diluted spray methods. Therefore, it was found that the diluted spray method applied in this study can be employed in any manufacture of air purification concrete blocks.

A Study on the Strength, Drying Shrinkage and Carbonation Properties of Lightweight Aggregate Mortar with Recycling Water (회수수를 사용한 경량골재 모르타르의 강도, 건조수축 및 중성화 특성에 관한 연구)

  • Oh, Tae-Gue;Kim, Ji-Hwan;Bae, Sung-Ho;Choi, Se-Jin
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.5
    • /
    • pp.391-397
    • /
    • 2020
  • This study is to compare and analyze the strength, drying shrinkage and carbonation properties of lightweight aggregate mortar using recycling water as prewetting water and mixing water. The flow, compressive strength, split tensile strength, drying shrinkage and carbonation depth of lightweight aggregate mortar with recycling water were measured. As test results, the mortar flow was similar in all mixes regardless of the recycling water content. The compresseive strength of the RW5 mix with 5% recycling water as prewetting water and mixing water was the highest value, about 53.9 MPa after 28 days. In addition, the tensile strength of lightweight mortar was about 3.4 to 3.8 MPa, indicating 7 to 9% of the compressive strength value regardless of recycling water content. In the case of drying shrinkage, the RW2.5 mix using 2.5% recycling water showed the lowest shrinkage rate as about 0.107% at 56 days. The drying shrinkage of the plain mix without recycling water was relatively higher than the RW2.5 and RW5 mix. The RW5 mix showed lowest carbonation depth compared to other mixes. In this study, the RW5 lightweight aggregate mortar with 5% recycling water exhibits excellent compressive strength and carbonation resistance. Therefore, it is considered that if the recycling water, a by-product of the concrete industry, is properly used as prewetting water and mixing water of lightweight mortar and concrete, it will be possible to increase the recycling rate of the by-product and contribute to improve the property of lightweitht aggregate mortar and concrete.