• Title/Summary/Keyword: Concrete Mixing

Search Result 1,003, Processing Time 0.025 seconds

Effect of Mixer on the Performance of Ultra-High Strength Steel Reinforced Concrete (초고강도 강섬유 보강 콘크리트의 성능에 미치는 믹서의 영향)

  • Park, Jung-Jun;Koh, Kyung-Taek;Ryu, Gum-Sung;Kang, Su-Tae;Kim, Sung-Wook;Han, Sang-Mook
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.549-552
    • /
    • 2006
  • Generally the ultra-high strength steel reinforced concrete has rich mix composition composed of high-strength type mineral admixtures and as a result of very low water-binder ratio(about under w/b=25%), it reveals ultra-high compressive strength(about over 100Mpa). Also, in order to obtain sufficient toughness after construction, we usually mix a large quantity steel fiber with ultra-high strength steel reinforced concrete therefore we must use proper mixer for workability. When we make the ultra-high strength steel reinforced concrete we need more long mixing time or much super-plasticizer than when we manufacture normal concrete. These bring about economical problems and performance deterioration. Therefore, in this study, in order to manufacture easily ultra-high strength steel reinforced concrete we develope a dedicated mixer for ultra-high strength steel reinforced concrete with high speed type. It carried out the examination for comparison between the dedicated and general type mixer, the analysis and counterplan of the point at issue when we manufacture ultra-high strength steel reinforced concrete by the dedicated mixer.

  • PDF

An Experimental Study on Manufacturing Ultra-High Strength Concrete of 2300kg/$\textrm{cm}^2$ Compressive Strength -Part 2, The Experiment on the Manufacture of the U-H-S Concrete- (압축강도2300kg/$\textrm{cm}^2$의 초고강도콘크리트의 개발에 관한 실험적 연구 -제 2보, 초고강도콘크리트의 제조에 관한 실험을 중심으로-)

  • 김진만;최희용;김규용;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.10a
    • /
    • pp.252-255
    • /
    • 1995
  • To reduce the size of structural members, high strength concrete has recently been utilized for structure such as ultra-high-rise buildings and prestressed concrete bridges in North America. And its compressive strength has gone up to 1300kgf/$\textrm{cm}^2$. In Japan. research on high-strength concrete has been undertaken on a large scale by the national enterprise so-called New RC Project, and this Project purposed to develop the design compressive strength of 1200kgf/$\textrm{cm}^2$. Considering these circumstance. the aim of this experimental study is to develop ultra-high-strength concrete with compressive strenght over 2300kgf/$\textrm{cm}^2$ with domestic current materials. There are so many factors which influence the manufacturing of ultra-high-strength concrete. The experimental factors selected in this study are mixing methods. curing methods. water-binder ratio, maximum size of coarse aggregate, and the replacement proportion of cement by silica fume. The results of this expermental study show that it is possible to develop the ultra-high-stength concrete with compressive strength over 2300kgf/$\textrm{cm}^2$.

  • PDF

Flowability and Strength Properties of High Flowing Self-Compacting Concrete Using for Tunnel Lining

  • Choi, Yun-Wang;Choi, Wook;Kim, Byoung-Kwon;Jung, Jea-Gwone
    • International Journal of Concrete Structures and Materials
    • /
    • v.2 no.2
    • /
    • pp.145-152
    • /
    • 2008
  • So far, there has been no study of the concrete to strengthen in the lining of the tunnels, except for the study of the stability of subgrade and the tunnel construction technologies. In the existing concrete work for tunnel lining, lots of problems happen due to the partial compaction and the material segregation after casting concrete. Accordingly, the aim of this study is to improve economic efficiency and secure durability through the improvement of the construction performance and quality of the concrete for the tunnel lining among the civil structures. Therefore, the compactability and strength properties of the High Flowing Self-Compacting Lining Concrete (HSLC) are evaluated to develop the mixing proportion for design construction technology of HSLC that can overcome the inner cavity due to the reduced flowability and unfilled packing, which has been reported as the problem in the existing lining concrete. The result of the evaluation shows that the ternary mix meets the regulations better than the binary mix. Consequently, it has been judged applicable to the cement for tunnel lining.

Construction Considering the Difference of Setting Time of Super Retarding Agent for Reduction of Hydration Heat of Footing Mass Concrete (기초 매스콘크리트의 수화열 저감을 위한 초지연제 응결시간차 공법의 현장 적용)

  • 황인성;배정렬;윤석명;김기철;오선교;한천구
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.05a
    • /
    • pp.95-98
    • /
    • 2003
  • This paper presents the results of field experiment to apply the difference of setting tine method using super retarding agent for reducing hydration heat of mass concrete of foundation. According to the results, as the properties of fresh concrete, base concrete satisfies aimed slump and air content, and there is no difference of slump and air content with mixture of super retarding agent. The mixing ratio of super retarding agent is determined for setting time to be retarded by 12 hours in comparison with base concrete, but because the temperature of the air and concrete is low, the difference of setting time is retarded to 24 hours. In man concrete of foundation to which the difference of setting time method is applied, crack by hydration heat is not seen because the lower concrete of super retarding agent generates heat after generation of hydration heat of the upper concrete.

  • PDF

A Study for Development of Durability of the Subway Concrete Structure exposed to Choride Environment (염해 환경에 있는 지하철 콘크리트 구조물의 내구성 향상 대책수립에 관한 연구)

  • Lee Moo-Kwan;Kim Eun Kyum;Kim Dae Ho
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.1184-1189
    • /
    • 2005
  • Durability of concrete has been currently issued in the engineering societies and a large number of studies on the concrete corrosion in salty environment have been performed. The reinforcement corrosion, which is the primary reason of deterioration of the concrete structure exposed to chloride environment. is caused by the chloride ions infiltration owing to underground water seeping into the concrete. In this study. the endurance periods using the diffusion equation of the concrete specification have been evaluated on the concrete structures with different addictives for the brand new R/C subway structure exposed to seashore underground water. Furthermore. the guidance for proper use of the addictives and the reasonable thickness of concrete cover are derived for concrete mixing. From the result of the evaluation corresponding to salt damage for Inchon subway line I, the endurance periods of the ordinary Portlandcement concretes are represented as $42\~75$ years and fail to achieve the objective period of 100 years. However, the lower water-cement ratio expands the endurance periods and the blast furnace slag concrete with small quantity of the silica fume, which shows the best performance of corrosion resistance in this study, represents more than 170 years of the endurance period. Moreover, the case of use of blast furnace slag and fly ash together shows the endurance period of $134\~171$ years and it means that the result very satisfies the objective endurance period.

  • PDF

Improving compressive strength of low calcium fly ash geopolymer concrete with alccofine

  • Jindal, Bharat Bhushan;Singhal, Dhirendra;Sharma, Sanjay K.;Ashish, Deepankar K.;Parveen, Parveen
    • Advances in concrete construction
    • /
    • v.5 no.1
    • /
    • pp.17-29
    • /
    • 2017
  • Geopolymer concrete is environmentally friendly and could be considered as a construction material to promote the sustainable development. In this paper fly ash based geopolymer concretes with different percentages of alccofine were made by mixing sodium hydroxide and sodium silicate as an alkaline activator and cured at ambient as well as heat environment in an electric oven at $90^{\circ}C$. Effects of various parameters such as the percentage of alccofine, curing temperature, a period of curing, fly ash content, was studied on compressive strength as well as workability of geopolymer concrete. The study concludes that the presence of alccofine improves the properties of geopolymer concrete during a fresh and hardened state of concrete. Geopolymer concrete in the presence of alccofine can be used for the general purpose of concrete as required compressive strength can be achieved even at ambient temperature. The 28 days compressive strength of 73 MPa, when cured at 90-degree Celsius, confirmed that it is also very suitable for precast concrete components.

Crack-healing and durability performance of self-healing concrete with microbial admixture (미생물 혼입 자기치유 콘크리트의 균열 치유성능 및 내구성능)

  • Chu, Inyeop;Woo, Sang-Kyun;Lee, Byung-Jae;Lee, Yun;Lee, Hyo-Sub
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.7 no.2
    • /
    • pp.295-299
    • /
    • 2021
  • Recently, interest in maintenance has been increasing due to the enlargement and aging of infra structures. Therefore, a new paradigm is required to secure and improve the durability of structures differentiated from the past. Accordingly, research on smart concrete incorporating the concept of self-healing into concrete is being actively conducted. In this study, the crack healing performance and durability performance of self-healing concrete applied with a hydrogel containing biomineral-forming microorganisms were evaluated. As a result of evaluating the dispersion of the hydrogel in concrete, it was confirmed that the hydrogel was well distributed in concrete matrix with a dispersion coefficient of 0.35 to 0.46. The crack healing performance evaluation was verified by a water permeability test, and showed a recovery rate of 95% or more at the age of 28 days, confirming the applicability of self-healing concrete. The durability performance of self-healing concrete was evaluated in terms of resistance to penetration of chloride ion and freezing and thawing. Regardless of the mixing of the hydrogel, the same level of durability performance was shown for various compressive strength level. Therefore, it was confirmed that the microbial admixture did not affect concrete durability. In the future, long-term crack healing performance and durability verification studies should be supplemented.

A Experimental Study on the Strength Improvement of Ground Granulated Blast Furnace Slag Concrete Using Recycled Aggregate Powder as Alkali-activator (순환골재 미분말을 알칼리 자극제로 활용한 고로슬래그 미분말 혼입 콘크리트의 강도증진에 관한 실험적 연구)

  • Jeon, Chan-Soo;Ryu, Dong-Wo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.6
    • /
    • pp.527-534
    • /
    • 2017
  • Accordingly, this study, in order to use powder of recycled aggregate from production of recycled aggregate as an activator of ground granulated blast furnace slag, the influence of added recycled aggregate powder on physical properties of concrete induced ground granulated blast furnace slag were analyzed by hydration stages. The results of the study are summarized as follows: Except for samples eluted powder of recycled aggregate 1%, all the samples were high alkali suspensions with higher than pH 12.0. In particular, when eluted time was 5 hours, the sample eluted powder of recycled aggregate 3% showed about 15 mg/l of calcium hydroxide that was not different from the amount of calcium hydroxide in the mixing water eluted powder of recycled aggregate 5%. Hence, from this results, it can be considered that optimal eluted powder of recycled aggregate was 3% in this study. When using mixing water eluted with powder of recycled aggregate, compared to use of ordinary mixing water, it showed greater compressive strength in the entire ages, and in the sample replaced with ground granulated blast furnace slag by 50%, its compressive strength was greater than that of the OPC. As use of mixing water eluted with powder of recycled aggregate in concrete used with large amount of ground granulated blast furnace slag was more effective for improving compressive strength than ordinary mixing water, it is verified that powder of recycled aggregate had an effect of activator.

Evaluation on Long-term Mechanical Performance and Durability of Recycled Coarse Aggregate Concrete Produced by Two-stage Mixing Approach (2단계 배합방법으로 제조된 순환굵은골재 콘크리트의 장기재령 역학적 성능 및 내구성 평가)

  • Seong-Uk, Heo;Jeong Jin, Son;Chul-Woo, Chung;Young Chan, Kim
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.4
    • /
    • pp.475-481
    • /
    • 2022
  • Recycled aggregates show high water absorption rate compared to natural aggregates due to microcrack developed during production process and adhered cement pastes at the surface of recycled aggregates. This leads to the deterioration of mechanical properties and slow work flow. Currently it is getting hard to satisfy high demand for natural aggregates. Utilizing recycled aggregate more widely may be a substitutable countermeasure for the shortage of natural resources. In this study, two-stage mixing approach(TSMA) suggested by Tam et al. is used to produce recycled aggregate concrete(RAC) with 100 % replacement of coarse natural aggregate and tests for compressive strength, elastic modulus, and chloride ion diffusion coefficient are conducted to find out the effect of TSMA compared to normal mixing method. According to experimental result compressive strength and elastic modulus of RAC with TSMA was superior to those of RAC with normal mixing irrespective of water-cement ratio, and in some cases mechanical properties of RAC with TSMA approached to those of natural aggregate concrete(NAC). However, chloride ion diffusion coefficient of RAC was higher than that of NAC. This illustrates that TSMA is not an appropriate method in reducing chloride ion diffusion coefficient, resulting in inconsequential contribution of TSMA to the durability of RAC.

A Study on the Development of Color Pavement (칼라포장(鋪裝) 개발(開發)에 관한 연구(研究))

  • Kim, Ju Won;Kim, Dae Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.2 no.2
    • /
    • pp.11-18
    • /
    • 1982
  • The binder for hot mix type colored pavement must have the same physical qualities as the straight asphalt cement, but its color must not be dark-brown. We developed a kind of synthetic resin binder with light yellow color and confirmed its possibility as a binder for colored pavement through the several comparison tests between the straight asphalt cement concrete mixture and the mixture of binder and aggregate for colored pavement. For the pigment, it has been assured through tests that home products have the possiblities to be used. The binder has come to the stage of practical use through the trial mixing by asphalt mixing plant and the trial field placing. The mixing operation and the paving method of colored mixture are same as normal asphalt concrete mixture, but the quantity of pigment replaces that of mineral filler. The required content of pigment is decided by the trial mixing with other materials to be used.

  • PDF