• Title/Summary/Keyword: Concrete Elastic Modulus

Search Result 473, Processing Time 0.025 seconds

Structural Capacity of Water Channel Fabricated of Blast Furnace Slag Concrete (고로슬래그를 혼입한 콘크리트 수로관의 구조 성능)

  • Yoo, Sung-Won;Yang, In-Hwan
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.4
    • /
    • pp.446-453
    • /
    • 2016
  • Structural capacity of water channel fabricated of concrete including blast furnace slag were investigated in this paper. An experimental study was consisted of materials test and structural test of concrete water channel. The mechanical properties of concrete including blast furnace slag were investigated. Ordinary Portland cement (OPC) was used as basic binder and the effect of the replacement of blast furnace slag for OPC was investigated. Experiments were performed to measure mechanical properties including compressive strength, elastic modulus and modulus of rupture. Test results show that the compressive strengths and modulus of ruptures of mixtures containing blast furnace slag were equivalent to those of OPC concrete. In addition, the structural capacity of concrete water channel with up to the replacement ratio of blast furnace slag of 45% was greater than the required strength in KS specification.

Evaluation of Material Properties of Fire-damaged Concrete Under Post-fire Curing Regimes Using Impact Resonance Vibration Method (충격 공진 기법을 이용한 화재 손상 콘크리트의 재양생 조건별 재료물성 평가)

  • Park, Sun-Jong;Yim, Hong Jae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.5
    • /
    • pp.42-48
    • /
    • 2017
  • When concrete structures expose to fire, the structures were damaged accompanied with degradation of material properties of concrete. In order to determine the reuse of fire-damaged concrete structures, it is needed a careful determination considering conditions of fire damage, such as exposure temperature and exposure time, and also potential to restore fire damage. This study investigates on the evaluation of residual material properties of fire-damaged concrete under different post-fire curing regimes. An experimental study was performed on concrete samples to measure the dynamic elastic modulus by the impact resonance vibration method. Upon the experimental results, the evidence of restoration of material properties was confirmed on specific post-fire curing regimes, higher humidity conditions. Additionally, a correlation analysis was performed on the dynamic elastic modulus with the tensile strength for identifying the effects of post-fire curing regimes on both material properties of fire-damaged concrete.

Stress Distribution in Concrete Pavements under Multi-Axle Vehicle Loads Obtained Using Transformed Field Domain Analysis (변환영역 해석법을 통한 콘크리트 도로 포장의 다축 차량 하중에 대한 응력 분포 분석)

  • Kim, Seong-Min;Shim, Jae-Soo;Park, Hee-Beom
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.5 s.95
    • /
    • pp.695-702
    • /
    • 2006
  • The stress distribution and the critical stresses in concrete pavements were analyzed using formulations in the transformed field domains when dual-wheel single-, tandem-, and tridem-axle loads were applied. First the accuracy of the transformed field domain analysis results was verified by comparing with the finite element analysis results. Then, the stress distribution along the longitudinal and transverse directions was investigated, and the effects of slab thickness, concrete elastic modulus, and foundation stiffness on the stress distribution were studied. The effect of the tire contact pressure related to the tire print area was also studied, and the location of the critical stress occurrence in concrete pavements was finally investigated. From this study, it was found that the critical concrete stress due to multi-axle loads became larger as the concrete elastic modulus increased, the slab thickness increased, and the foundation stiffness decreased. The number of axles did not tend to affect the critical stress ratio except for a small foundation stiffness value with which the critical stress ratio became significantly larger as the number of axles increased. The critical stress location in the transverse direction tended to move into the interior as the tire contact pressure increased, the concrete elastic modulus increased, the slab thickness increased, and the foundation stiffness decreased. The critical stress location in the longitudinal direction was under the axle for single- and tandem-axle loads, but for tridem-axle loads, it tended to move under the middle axle from the outer axles as the concrete elastic modulus and/or slab thickness increased and the foundation stiffness decreased.

An experimental study on the mechanical properties of early age concrete (초기재령 콘크리트의 역학적 특성에 관한 실험적 연구)

  • Lee, Kwang-Gyo;Yang, Eun-Ik;Yi, Seong-Tae;Kim, Myung-You;Park, Jin-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.668-671
    • /
    • 2004
  • Recently, the concern for mechanical properties at early age concrete are increasing because of the importance of the thermal stress and the determination of removal time of form work and prestressing work. In this study, an estimation for the development of compressive strength and elastic modulus with age in concretes isothermally cured $(10^{\circ}C,\;20^{\circ}C)$ and having W/C ratio of 30, 40, and $50\%$ were investigated. According to experiment results, the development of compressive strength and elastic modulus shows higher values at early ages as the W/C ratio decreases and curing temperature increases. When the maturity concept, for estimation of the strength, is adopted, a modification for W/C ratio is required at early ages.

  • PDF

Effect of Metakaolin Content on the Properties of High Strength Concrete

  • Dinakar, P.;Sahoo, Pradosh K.;Sriram, G.
    • International Journal of Concrete Structures and Materials
    • /
    • v.7 no.3
    • /
    • pp.215-223
    • /
    • 2013
  • This study presents the effect of incorporating metakaolin (MK) on the mechanical and durability properties of high strength concrete for a constant water/binder ratio of 0.3.MK mixtures with cement replacement of 5, 10 and 15 % were designed for target strength and slump of 90 MPa and $100{\pm}25mm$. From the results, it was observed that 10 % replacement level was the optimum level in terms of compressive strength. Beyond 10 %replacement levels, the strength was decreased but remained higher than the control mixture. Compressive strength of 106 MPa was achieved at 10 % replacement. Splitting tensile strength and elastic modulus values have also followed the same trend. In durability tests MK concretes have exhibited high resistance compared to control and the resistance increases as the MK percentage increases. This investigation has shown that the local MK has the potential to produce high strength and high performance concretes.

Factors affecting the properties of recycled concrete by using neural networks

  • Duan, Zhen-Hua;Poon, Chi-Sun
    • Computers and Concrete
    • /
    • v.14 no.5
    • /
    • pp.547-561
    • /
    • 2014
  • Artificial neural networks (ANN) has been proven to be able to predict the compressive strength and elastic modulus of recycled aggregate concrete (RAC) made with recycled aggregates (RAs) from different sources. However, ANN is itself like a black box and the output from the model cannot generate an exact mathematical model that can be used for detailed analysis. So in this study, sensitivity analysis is conducted to further examine the influence of each selected factor on the output value of the models. This is not only conducive to the determination and selection of the more important factors affecting the results, but also can provide guidance for researchers in adjusting mix proportions appropriately when designing RAC based on the variation of these factors.

Micromechanics-based Evaluation of Elastic Modulus of Lightweight Foamed concrete (경량기포콘크리트 탄성계수의 미시역학적 추정)

  • 조호진;송하원;변근주
    • Magazine of the Korea Concrete Institute
    • /
    • v.9 no.4
    • /
    • pp.125-135
    • /
    • 1997
  • 경량기포콘크리트란 시멘트슬러리 속에 미리 생성된 기포를 혼합시켜 양생시킴으써 동일한 체적의 보통콘크리트보다 가볍게 만든 콘크리트를 의미한다. 따라서 경량기포콘크리트는시멘트풀 결합재내에 기포가 무작위로 분포된 복합재료이다. 본 연구의 목적은 이러한경량기포콘크리트의 탄성계수 추정식을 미시역학적 이론을 바탕으로 추정하는데 있다. 이르 위해 본 논문에서는 미시역학적인 미분법에 Hansen의 수정기법을 적용한 수정미분법을 사용하여 경량기포콘크리트의 탄성계수 추정식을 제안하였다. 제안된 추정식을 사용하여 얻어진 결과는 실험결과와 잘 일치하였고 기존의 어떤 추정식보다도 우수한 결과를 보였다.

Evaluation on Mechanical Properties of PP Fiber Ultra High Strength Concrete at Elevated Temperatures (PP섬유 혼입에 따른 초고강도 콘크리트의 고온역학적특성 평가)

  • Bang, Deog-Yun;Kim, Gyu-Yong;Choe, Gyeong-Cheol;Yoon, Min-Ho;Lee, Bo-Kyeong;Hwang, Eui-Chul
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.53-54
    • /
    • 2016
  • In this study, the effect of high temperature on the compressive strength and elastic modulus of ultra high strength concrete with PP fiber were experimentally investigated. As the result, the compressive strength and elastic modulus of ultra high strength concrete were irrespectively evaluated mixed ratio of PP fiber at high temperature.

  • PDF

A Study on Mechanical Properties of Concrete at Elevated Temperatures (고온에서의 콘크리트 재료 역학적 특성에 관한 연구)

  • Park, Chan-Kyu;Kim, Gyu-Yong;Lee, Seung-Hoon;Park, Ju-Heon;Kim, Young-Sun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.769-772
    • /
    • 2006
  • The effects of high temperature on strength, elastic modulus and strain at peak stress of concrete were experimentally investigated. The type of test was the stressed test that a preload was applied to the specimen prior to heating and the load was sustained during the heating period. In this study, the level of preload was 25% of compressive strength at room temperature. All tests were conducted at various temperatures(20,100, 200, 300, 400, 500, 600 and $700^{\circ}C$) for concretes made with W/B ratios 46% and 32%. Test results showed that on the whole, the relative values of strength and elastic modulus, and the real strain value at peak stress were not influenced by the W/B ratio.

  • PDF

Effects of Fillers on Mixing and Mechanical Properties of Polymer Concrete (충진재가 폴리머 콘크리트의 배합과 역학적 성질에 미치는 영향)

  • 연규석;김광우;김기성;김관호
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.35 no.2
    • /
    • pp.81-91
    • /
    • 1993
  • This study was performed to evalute effects of fillers on the mixing characteristics and mechanical properties of polymer concrete. Two types of unsaturated polyester polymer and two types of epoxy resin were used as binder material, and the portland cement, a fly ash and heavy calcium carbonate were used as filler. Following conclusions were drawn from the research results. 1. Working life of polymer concrete was not affected by filler types, but affected significantly by polymer types and quantities of hardener and catalysts. 2. Without concerning polymer types, use of heavy calcuim carbonate as filler was the best in improving workability.3. The highest strength was achieved by heavy calcium carbonate in using unsaturated polyester resin and by fly ash in using epoxy resin type.4. Elastic modulus was in the range of 2.05X 10-5~2.6X 10-5gf/cm$^2$, which was approximatly 60% of that of cement concrete. Heavy calcium carbonate with unsaturated polyester resin and fly ash with epoxy resin showed relatively higher elastic modulus.

  • PDF