DOI QR코드

DOI QR Code

Evaluation of Material Properties of Fire-damaged Concrete Under Post-fire Curing Regimes Using Impact Resonance Vibration Method

충격 공진 기법을 이용한 화재 손상 콘크리트의 재양생 조건별 재료물성 평가

  • Received : 2017.03.06
  • Accepted : 2017.03.29
  • Published : 2017.09.01

Abstract

When concrete structures expose to fire, the structures were damaged accompanied with degradation of material properties of concrete. In order to determine the reuse of fire-damaged concrete structures, it is needed a careful determination considering conditions of fire damage, such as exposure temperature and exposure time, and also potential to restore fire damage. This study investigates on the evaluation of residual material properties of fire-damaged concrete under different post-fire curing regimes. An experimental study was performed on concrete samples to measure the dynamic elastic modulus by the impact resonance vibration method. Upon the experimental results, the evidence of restoration of material properties was confirmed on specific post-fire curing regimes, higher humidity conditions. Additionally, a correlation analysis was performed on the dynamic elastic modulus with the tensile strength for identifying the effects of post-fire curing regimes on both material properties of fire-damaged concrete.

콘크리트 구조물이 화재 손상을 입을 경우 노출온도 및 지속시간에 따라 구조물의 심각한 성능 저하를 야기하며, 콘크리트의 재료 물성 저하를 수반한다. 화재 손상을 입은 콘크리트 구조물의 재사용여부 및 보수보강 판단을 위해서는 손상 직후 및 재양생 조건에 따른 주요 손상 부위의 면밀한 손상 평가가 필요하다. 본 연구에서는 재양생 조건에 따른 화재 손상을 입은 콘크리트의 재료물성 회복에 관한 실험적 연구를 수행하였다. 화재 손상을 입은 콘크리트 시편을 상대습도 및 재양생 기간을 달리한 재양생 조건을 적용하였으며, 충격공진기법을 도입하여 콘크리트 시편의 화재 손상 전후 및 재양생 이후의 동탄성계수를 측정하여 손상 정도를 평가하였다. 측정된 결과로부터 재양생 조건 중 높은 상대습도 조건에서 지배적으로 재료물성의 회복이 발생하였다. 추가적으로 콘크리트 시편의 동탄성계수 및 인장강도의 직접적인 비교 및 선형회귀분석을 수행하여 재양생 조건에 따른 영향을 분석하였으며, 이를 토대로 높은 습도 조건에서 동탄성계수의 회복이 인장강도에 비해 두드러지게 나타남을 확인하였다.

Keywords

References

  1. Alonso, C. and Fernandez, L. (2004), Dehydration and rehydration processes of cement paste exposed to high temperature environments, Journal of materials science, 39(9), 3015-24. https://doi.org/10.1023/B:JMSC.0000025827.65956.18
  2. ASTM International (2014), Standard test method for fundamental transverse, longitudinal, and torsional resonant frequencies of concrete specimens, ASTM C 215-14, American Society for Testing and Materials, 7p.
  3. Bazant, Z. P. and Kaplan, M. F. (1996), Concrete at High Temperature: Material Properties and Mathematical Models, Longman Group Limited, 6-85.
  4. Dilek, U. (2008), Assessment of damage gradients using dynamic modulus of thin concrete disks, ACI Materials Journal, 105(5), 429-437.
  5. Harada, T., Takeda, J., and S. Yamane F. F. (1972), Strength, elasticity and thermal properties of concrete subjected to elevated temperatures, ACI Special Publication, 34, 377-406.
  6. Henry, M., Darma, I. S., and Sugiyama, T. (2014), Analysis of the effect of heating and re-curing on the microstructure of high-strength concrete using X-ray CT, Construction and Building Materials, 67, 37-46. https://doi.org/10.1016/j.conbuildmat.2013.11.007
  7. Henry, M., Suzuki, M., and Kato, Y. (2011), Behavior of fire-damaged mortar under variable re-curing conditions, ACI Materials Journal, 108(3), 281-289.
  8. Kim, W. J. (2008), Fire of Reinforce Concrete Structure, Magazine of the Korea Concrete Institute, 20(5), 12-21. https://doi.org/10.22636/MKCI.2008.20.5.12
  9. Leming, M. L., Nau, J. M., and Fukuda, J. (1998), Non-destructive determination of the dynamic modulus of concrete disks, ACI Materials Journal, 95(1), 50-57.
  10. Lin, W. M., Lin T., and Powers-Couche L. (1996), Microstructures of fire-damaged concrete, ACI materials journal, 93(3), 199-205.
  11. Lin, Y., Hsiao, C., Yang, H., and Lin, Y-.F. (2011), The effect of post-fire-curing on strength-velocity relationship for nondestructive assessment of fire-damaged concrete strength, Fire Safety Journal, 46(4), 178-85. https://doi.org/10.1016/j.firesaf.2011.01.006
  12. Park, S-.J., Yim, H. J., and Kwak, H-.G. (2015), Effects of post-fire curing conditions on the restoration of material properties of fire-damaged concrete, Construction and Building Materials, 99, 90-98. https://doi.org/10.1016/j.conbuildmat.2015.09.015
  13. Phan, L. T., Lawson, J. R., and Davis, F. L. (2001), Effects of elevated temperature exposure on heating characteristics, spalling, and residual properties of high performance concrete, Materials and Structures, 34(2), 83-91. https://doi.org/10.1007/BF02481556
  14. Philleo, R. (1958), Some physical properties of concrete at high temperatures, ACI Journal Proceedings, 54(4), 857-864.
  15. Poon, C-.S., Azhar, S., Anson, M., and Wong, Y-L. (2001), Strength and durability recovery of fire-damaged concrete after post-fire-curing, Cement and Concrete Research, 31(9), 1307-18. https://doi.org/10.1016/S0008-8846(01)00582-8
  16. Sarshar, R. and Khoury, G. (1993), Material and environmental factors influencing the compressive strength of unsealed cement paste and concrete at high temperatures, Magazine of concrete research, 45(162), 51-61. https://doi.org/10.1680/macr.1993.45.162.51
  17. Yim, H. J., Kim, J. H., Park, S-.J., and Kwak, H-.G. (2012), Characterization of thermally damaged concrete using a nonlinear ultrasonic method, Cement and Concrete Research, 42(11), 1438-46. https://doi.org/10.1016/j.cemconres.2012.08.006