• Title/Summary/Keyword: Concrete Bricks

Search Result 60, Processing Time 0.026 seconds

Experimental assessment of post-earthquake retrofitted reinforced concrete frame partially infilled with fly-ash brick

  • Kumawat, Sanjay R.;Mondal, Goutam;Dash, Suresh R.
    • Earthquakes and Structures
    • /
    • v.22 no.2
    • /
    • pp.121-135
    • /
    • 2022
  • Many public buildings such as schools, hospitals, etc., where partial infill walls are present in reinforced concrete (RC) structures, have undergone undesirable damage/failure attributed to captive column effect during a moderate to severe earthquake shaking. Often, the situation gets worsened when these RC frames are non-ductile in nature, thus reducing the deformable capability of the frame. Also, in many parts of the Indian subcontinent, it is mandatory to use fly-ash bricks for construction so as to reduce the burden on the disposal of fly-ash produced at thermal power plants. In some scenario, when the non-ductile RC frame, partially infilled by fly-ash bricks, suffers major structural damage, the challenge remains on how to retrofit and restore it. Thus, in this study, two full-scale one-bay, one-story non-ductile RC frame models, namely, bare frame and RC partially infilled frame with fly-ash bricks in 50% of its opening area are considered. In the previous experiments, these models were subjected to slow-cyclic displacement-controlled loading to replicate damage due to a moderate earthquake. Now, in this study these damaged frames were retrofitted and an experimental investigation was performed on the retrofitted specimens to examine the effectiveness of the proposed retrofitting scheme. A hybrid retrofitting technique combining epoxy injection grouting with an innovative and easy-to-implement steel jacketing technique was proposed. This proposed retrofitting method has ensured proper confinement of damaged concrete. The retrofitted models were subjected to the same slow cyclic displacement-controlled loading which was used to damage the frames. The experimental study concluded that the hybrid retrofitting technique was quite effective in enhancing and regaining various seismic performance parameters such as, lateral strength and lateral stiffness of partially fly-ash brick infilled RC frame. Thus, the steel jacketing retrofitting scheme along with the epoxy injection grouting can be relied on for possible repair of the structural members which are damaged due to the captive column effect during the seismic shaking.

Experimental work on seismic behavior of various types of masonry infilled RC frames

  • Misir, I. Serkan;Ozcelik, Ozgur;Girgin, Sadik Can;Kahraman, Serap
    • Structural Engineering and Mechanics
    • /
    • v.44 no.6
    • /
    • pp.763-774
    • /
    • 2012
  • Reinforced concrete frame structures with masonry infill walls constitute the significant portion of the building stock in Turkey. Therefore it is very important to understand the behavior of masonry infill frame structures under earthquake loads. This study presents an experimental work performed on reinforced concrete (RC) frames with different types of masonry infills, namely standard and locked bricks. Earthquake effects are induced on the RC frames by quasi-static tests. Results obtained from different frames are compared with each other through various stiffness, strength, and energy related parameters. It is shown that locked bricks may prove useful in decreasing the problems related to horizontal and vertical irregularities defined in building codes. Moreover tests show that locked brick infills maintain their integrity up to very high drift levels, showing that they may have a potential in reducing injuries and fatalities related to falling hazards during severe ground shakings.

폐콘크리트에 대한 구리(Cu)와 납(Pb)의 중금속 흡착 특성

  • 이용수;조재범;현재혁;정하익;정형식
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.11a
    • /
    • pp.277-280
    • /
    • 2000
  • Annually a greate many of mineral demolition wastes consisting mainly of concrete and bricks, is produced in Korea. Waste concrete present a significant potential as construction material. Therefor a series of test was peformed on waste concrete to evaluate adsorption for Cu and Pb.

  • PDF

Effect of the Broken Red Bricks on the Mechanical Properties of Reinforced Concrete Beams (부순 적벽돌 혼입량에 따른 철근콘크리트 보의 역학적 특성에 관한 연구)

  • Kim, Jeong Sup;Shin, Yong Seok;Cho, Cheol Hee;No, Sung Yeol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.2
    • /
    • pp.83-90
    • /
    • 2008
  • The purpose of this study is to attempt to use broken red brick, which is categorized as impurities of circular aggregate to thick aggregate, as a replacement for concrete. Through the material test and performance test for each mixing rate of the broken red brick (0%, 30%, 60%), the following conclusion was reached by studying the material and structural characteristics of circular aggregate to the concrete. Even though broken red brick, which is categorized as impurities of circular aggregate, is mixed 30% with normal rubble, the compression strength, intensity strength, and curving strength was similar to that of concrete that uses normal rubble. Therefore, concrete beam made with broken red brick can be applied to the real construction field. Also, the study regarding the cutting test of the concrete that uses broken red brick and regarding applying and mixing admixture that can increase the ductility factor will be required in the future.

A Study on Masonry Techniques in Ancient Roman Architecture (고대 로마건축의 석축기법에 관한 연구)

  • Yoon, Seong-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.10
    • /
    • pp.4031-4040
    • /
    • 2010
  • The purpose of this study is to research the characteristics of masonry techniques on Roman ancient architecture. Opus so means masonry, has many types and techniques and still we use that word. Roman masonry technique appears to be very diverse kinds throughout to try and change the outcome of new technology. Depending on the use of materials the process can distinguished in three courses. First, just use only stones and bricks. Second is the use of concrete that is advanced to cement structure. Third is the use of air-dried bricks and grilled bricks. Roman masonry ranges of techniques not limited to the construction of the resulting but created a variety of architectural language. Architectural space is based on a comprehensive development of masonry techniques.

The Study on the ECO Artificial Aggregate using Coal-ash (II) (석탄회를 이용한 환경친화적 인공골재 개발 (II))

  • 조병완;김영진;황의민;안제상
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.275-280
    • /
    • 2001
  • Recycling of coal combustion by-product(Ash) are becoming more improtant in the utilization business as a result of the increased use of NOx reduction technologies at coal-fired power plants. current disposal methods of these by-products create not only a loss of profit for the power industry, but also environmental concerns that breed negative public opinion. Since inherent characteristics make these by-product suitable for building materials, several types of artificial aggregates and construction bricks are manufactured and tested to verify the engineering properties.

  • PDF

The Study Concrete Brick Material of Recycle Cement Using (재생시멘트를 이용한 콘크리트벽돌의 물성 연구)

  • Seo Kyung-Ho;Park Cha-Won;Ahn Jae-Cheol;Hee Byeung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • v.y2004m10
    • /
    • pp.87-90
    • /
    • 2004
  • Serious problems of the environment protection and resource exhaustion are exhibited. due to the increase of the construction materials and activation of the remodeling, recently. Especially, most of the advanced countries. recycling plan for the waste concrete is vigorously progressing. The purpose of this study is making advances in the recycling of waste concrete material for use as recycled aggregate to make secondary concrete product. Using recycled aggregates form demolished concrete, we manufactured cement bricks to experiment overall performance in Korean Standard and feasible performances. On the recycled cement, in the case of cement : aggregate is 1 : 7 is satisfied with KS F 4004 : dimensions, water absorption, compressive strength of quality of a standard. So we concluded that it has great feasibility to apply these products to construction industry.

  • PDF

Evaluation and Physicochemical Property for Building Materials from the Japanese Ministry of General Affairs in Joseon Dynasty (일제강점기 조선통감부 건축재료의 물리화학적 특성과 평가)

  • Park, Seok Tae;Lee, Jeongeun;Lee, Chan Hee
    • Economic and Environmental Geology
    • /
    • v.55 no.4
    • /
    • pp.317-338
    • /
    • 2022
  • Physicochemical characteristics and evaluation were studied by subdividing the concretes, bricks and earth pipes on the site of the Japanese Ministry of General Affairs in Joseon Dynasty, known as modern architecture, into three periods. Concretes showed similar specific gravity and absorption ratio, and large amounts of aggregates, quartz, feldspar, calcite and portlandite were detected. Porosity of the 1907 bricks were higher than those of 1910 and 1950 bricks. All earthen pipe is similar, but the earlier one was found to be more dense. Bricks and earthen pipes are dark red to brown in color within many cracks and pores, but the matrix of the earthen pipe is relatively homogeneous. Quartz, feldspar and hematite are detected in bricks, and mullite is confirmed with quartz and feldspar in earthen pipes, so it is interpreted that the materials have a firing temperature about 1,000 to 1,100℃. Concretes showed similar CaO content, but brick and earthen pipe had low SiO2 and high Al2O3 in the 1907 specimen. However, the materials have high genetic homogeneity based on similar geochemical behaviors. Ultrasonic velocity and rebound hardness of the concrete foundation differed due to the residual state, but indicated relatively weak physical properties. Converting the unconfined compressive strength, the 1st extended area had the highest mean values of 45.30 and 46.33 kgf/cm2, and the 2nd extended area showed the lowest mean values (20.05 and 24.76 kgf/cm2). In particular, the low CaO content and absorption ratio, the higher ultrasonic velocity and rebound hardness. It seems that the concrete used in the constructions of the Japanese Ministry of General Affairs in Joseon Dynasty had similar mixing characteristics and relatively constant specifications for each year. It is interpreted that the bricks and earthen pipes were through a similar manufacturing process using almost the same raw materials.

An Experimental Study on Water-Purification Properties in Cement Bricks Using Effective Micro-Organisms and Zeolite (유용 미생물과 제올라이트를 이용한 시멘트 벽돌의 수질 정화 특성에 관한 실험적 연구)

  • Kim, Wha-Jung;Choi, Kil-Jun;Park, Jun-Seok
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.3
    • /
    • pp.331-338
    • /
    • 2011
  • The purpose of this study is to use organisms or micro-organism functions for eco-friendly water-purification of cement bricks, utilizing bioremediation. Many researches have been performed in the past to improve water quality by using effective micro-organisms in construction materials. In order to purify water using micro-organisms, this research used soybean paste bacteria, an effective micro-organism that was identified through 16S rDNA sequence analysis performed in Daegu S. Environment Protection Institute in addition to Natto bacteria that was studied in the previous research. With these effective micro-organisms with water-purification ability, this study examined their water-purification possibility on cement bricks. This study used Zeolite to immobilize micro-organisms to bricks, and confirmed that the micro-organisms were attached on Zeolite from SEM analysis. The experimental results showed that specific micro-organisms can be used to effectively remove contamination an used to develop eco-friendly construction materials. The study on micro-organisms for material purification shows great promises as a future research topic.

Experimental and numerical studies on the frame-infill in-teraction in steel reinforced recycled concrete frames

  • Xue, Jianyang;Huang, Xiaogang;Luo, Zheng;Gao, Liang
    • Steel and Composite Structures
    • /
    • v.20 no.6
    • /
    • pp.1391-1409
    • /
    • 2016
  • Masonry infill has a significant effect on stiffness contribution, strength and ductility of masonry-infilled frames. These effects may cause damage of weak floor, torsional damage or short-column failure in structures. This article presents experiments of 1/2.5-scale steel reinforced recycled aggregates concrete (SRRC) frames. Three specimens, with different infill rates consisted of recycled concrete hollow bricks (RCB), were subjected to static cyclic loads. Test phenomena, hysteretic curves and stiffness degradation of the composite structure were analyzed. Furthermore, effects of axial load ratio, aspect ratio, infill thickness and steel ratio on the share of horizontal force supported by the frame and the infill were obtained in the numerical example.