본 연구의 목적은 텍스트 마이닝 및 CONCOR 분석을 활용해 국내 환자안전문화 연구주제를 분석하는 것이다. 연구방법은 자료수집, 데이터 전처리, 텍스트 마이닝과 사회연결망 분석, CONCOR 분석 단계로 진행하였으며, 2021년 9월1일 기준으로 '환자안전문화'의 주제어를 검색하여 중복된 논문과 본 연구 목적에 부합되지 않는 논문을 제외한 총 136편을 분석하였다. 자료 분석은 텍스톰(Textom)과 UCINET 프로그램을 이용하였다. 본 연구의 결과 환자안전문화 관련 연구의 TF(빈도)는 환자안전(patient safety), TF-IDF(문서상의 중요도)는 간호(nursing) 가 가장 높게 나타났다. CONCOR 분석결과 환자안전문화를 구성하는 지식 및 태도, 커뮤니케이션, 의료서비스, 팀, 작업환경, 구조, 조직 및 경영의 총 7개의 클러스터가 도출되었다. 추후 환자안전문화 구축과 환자결과와의 연관성에 대한 연구가 진행되어야 할 필요가 있다.
본 연구는 장애 유아에 대한 최근 10년간의 사회적 인식을 알아보기 위해 인터넷 기반의 빅데이터 분석 시스템인 Textom을 활용하였다. Textom으로 수집된 자료는 데이터 클리닝 과정을 거쳐 빈도가 높은 순으로 50개의 키워드가 선정되었으며, 의미연결망 분석을 위해 UCINET6으로 중심성 분석과 CONCOR분석을 실시하였다. 분석된 자료는 NetDraw를 활용하여 시각화하였다. 그 결과 '교육, 요구, 부모, 통합교육' 등의 키워드가 빈도수, 연결 및 위세 중심성에서 높은 순위를 차지하였다. 그리고 매개 중심성은 '부모, 교사, 문제, 프로그램, 상담'이 높은 순위를 차지하였다. CONCOR분석에서는 '장애, 유아, 진단, 프로그램'의 키워드를 중심으로 하는 4개 군집이 형성되었다. 이러한 연구 결과를 바탕으로 장애 유아에 대한 사회적 인식의 주제가 무엇인지 살펴보고, 주제별 시사점을 논하였다.
본 연구는 기계학습의 키워드 출현 빈도 분석과 CONCOR(CONvergence of iteration CORrealtion) 기법을 통한 ICT 교육에 대한 흐름을 탐색한다. 2018년부터 현재까지의 등재지 이상의 논문을 'ICT 교육'의 키워드로 구글 스칼라에서 304개 검색하였고, 체계적 문헌 리뷰 절차에 따라 ICT 교육과 관련이 높은 60편의 논문을 선정하면서, 논문의 제목과 요약을 중심으로 키워드를 추출하였다. 단어 빈도 및 지표 데이터는 자연어 처리의 TF-IDF를 통한 빈도 분석, 동시 출현 빈도의 단어를 분석하여 출현 빈도가 높은 49개의 중심어를 추출하였다. 관계의 정도는 단어 간의 연결 구조와 연결 정도 중심성을 분석하여 검증하였고, CONCOR 분석을 통해 유사성을 가진 단어들로 구성된 군집을 도출하였다. 분석 결과 첫째, '교육', '연구', '결과', '활용', '분석'이 주요 키워드로 분석되었다. 둘째, 교육을 키워드로 N-GRAM 네트워크 그래프를 진행한 결과 '교육과정', '활용'이 가장 높은 단어의 관계로 나타났다. 셋째, 교육을 키워드로 군집분석을 한 결과, '교육과정', '프로그래밍', '학생', '향상', '정보'의 5개 군이 형성되었다. 이러한 연구 결과를 바탕으로 ICT 교육 동향의 분석 및 트렌드 파악을 토대로 ICT 교육에 필요한 실질적인 연구를 수행할 수 있을 것이다.
사회문제를 해결하는 방법들 중 하나로 활용성이 제시되고 있는 빅데이터 분석기법을 이용하여 작업관련성 근골격계질환에 관한 연구동향을 분석하고자 키워드 네트워크 분석 기법과 CONCOR 분석기법을 적용하여 본 연구를 진행하였다. 본 연구에서 도출한 연구결과는 첫째, 작업관련성 근골격계질환 논문 수는 근골격계 유해요인조사가 실시된 2003년 이후 20년간 연평균 33편 이상 게재되었으며 2007~2009년 게재 비율이 증가하였다. 둘째, 텍스트 마이닝을 이용하여 출현된 상위 키워드의 빈도는 작업(4,940), 근골격계질환(2,197), 증상(1,836), 관련(1,769), 근골격계(1,421) 등의 순으로 나타났다. 셋째, CONCOR 분석결과 '근골격계질환 치료', '안전보건관리', '근로환경조사', '작업환경측정' 4개의 군집으로 나뉘었다. 본 연구가 근골격계질환 연구의 발전방안을 위한 세부적인 연구로서 다양한 방향으로 모색하는데 활용되기를 기대한다.
본 연구는 1995년부터 2020년까지 기간의 '미혼모', '싱글맘', '비혼모' 키워드를 중심으로 시기별 빅데이터를 수집, 분석하여, 미혼모에 대한 관점 변화에 따른 적절한 정부의 지원정책 방향성을 제시하고자 한다. 자료수집을 위해 빅데이터 수집 플랫폼인 텍스톰을 활용하여 포털검색 사이트 네이버, 다음에서 데이터 수집 후, 데이터를 정제하는 과정을 거쳤다. 최종 정제된 데이터는 텍스톰에서 제공하는 단어빈도분석, TF-IDF 분석, N-gram 분석, UCINET6 프로그램을 통한 Network 분석과 CONCOR 분석을 진행하였다. 연구결과, 단어빈도분석, TF-IDF 분석에서는 유사한 단어들이 출현하였으나 연도별로 차이를 보였고, N-gram 분석에서는 단어 출현의 유사점은 있었으나 빈도수와 연쇄적으로 출현되는 단어들의 형태에 많은 차이가 있었으며 CONCOR 분석결과, 연도별로 다른 군집을 이루는 것을 볼 수 있었다. 본 연구는 미혼모의 관점 변화를 빅데이터의 분석을 통해 확인하고, 독립적인 여성들의 다양한 선택권을 위한 미혼모 정책, 그리고 그에 맞는 차별 없는 임신, 출산, 양육이 새로운 가족의 형태 내로 포용 되는 정책의 필요성을 제언한다.
본 연구의 목적은 빅데이터 분석을 이용하여 주짓수에 대한 사회적 관심과 인식을 분석해 발전방안을 모색하는데 있다. 최근 10년간 국내 주요 포털 사이트의 데이터를 수집해 네트워크 분석, 중심성 분석, CONCOR 분석을 실시하였다. 먼저 네트워크 분석과 연결 중심성 분석에서 '유도' 가 가장 중요한 연관어로 나타났으며, 근접 중심성 분석에서는 '디펜더'가, 매개 중심성 분석에서는 '스포츠'가 가장 중요한 연관어였다. CONCOR 분석결과 4개의 군집(관련 운동 및 마케팅, 주짓수 대회, 승급, 용품 및 비용)이 형성되었다. 연구의 결론으로 첫째, '유도', '운동', '대회', '도복', '체육관', '승급' 등의 단어를 활용한 홍보가 필요하다. 둘째, 수련 비용 등에 대해 정보를 다양한 루트로 공유하고, 승급과정이나 방법에 대한 인식이 보편화 될 수 있도록 하는 방안이 마련되어야 하며, 안전용품개발 및 안전한 수련 문화를 만들어나갈 필요가 있다. 셋째, 꾸준히 대회를 유치해 새로운 수련생들의 유입을 지속적으로 늘리는 방안을 모색할 필요가 있다.
이 연구는 한국의 중독 연구의 동향을 파악하고 발전 방향을 모색하기 위해 2020년부터 2022년까지 지난 3년간 국내 전문학술지 게재 논문 817 건을 대상으로 텍스트마이닝 기법을 활용하여 분석한 연구이다. 분석 결과는 다음과 같다. 첫째, 다양한 중독 관련 키워드가 나타났으나 스마트폰, 게임, 인터넷, 도박, 관계중독 등 모바일을 중심으로 한 온라인에서의 행위중독 관련 중독 연구들이 주요 상위 키워드로 두드러지게 나타났다. 둘째, TF-IDF 분석결과 중독연구에서 지난 3년 간 스마트폰이나, 게임, 인터넷, 일 중독과 같은 행위중독 관련 중독연구가 많이 수행되었고 특히, 아직 임상적으로 중독문제로 진단화 하고 있지 않은 스마트폰이나 게임, 인터넷 등에 대한 중독문제들에 대한 연구수행이 많다는 것을 알 수 있다. 셋째, 2-gram 분석 결과 스마트폰이나 게임, 인터넷 등 주로 행위중독에 해당 되는 단어들이 중독이라는 키워드와 나란히 등장하는 비율이 매우 높으며, 그 가운데 스마트폰과 중독문제와 관련하여 쌍을 이루는 단어들이 연구논문에서 많이 언급되고 있음을 알 수 있다. 넷째, CONCOR 분석결과 알코올사용장애, 인터넷 등 보편적 중독문제에 관한 연구, 마약과 도박중독의 회복 관련 연구, 모바일기기와 미디어 중독 관련 연구, 행위중독 관련 최신 경향 연구, 그 외 기타 중독 문제 관련 연구로 5개의 군집으로 나타났다. 마지막으로 본 연구 결과를 바탕으로 향후 중독 관련 연구를 위한 방향성을 제언하였다.
Along with the transition to the fourth industrial revolution, the possibility of metaverse-based innovation in the fashion field has been confirmed, and various applications are being sought. Therefore, this study performs meaning structure analysis and discusses the prospects of meta fashion using big data. From 2020 to 2022, data including the keyword "metaverse + fashion design" were collected from portal sites (Naver, Daum, and Google), and the results of keyword frequency, N-gram, and TF-IDF analyses were derived using text mining. Furthermore, network visualization and CONCOR analysis were performed using Ucinet 6 to understand the interconnected structure between keywords and their essential meanings. The results were as follows: The main keywords appeared in the following order: fashion, metaverse, design, 3D, platform, apparel, and virtual. In the N-gram analysis, the density between fashion and metaverse words was high, and in the TF-IDF analysis results, the importance of content- and technology-related words such as 3D, apparel, platform, NFT, education, AI, avatar, MCM, and meta-fashion was confirmed. Through network visualization and CONCOR analysis using Ucinet 6, three cluster results were derived from the top emerging words: "metaverse fashion design and industry," "metaverse fashion design and education," and "metaverse fashion design platform." CONCOR analysis was also used to derive differentiated analysis results for middle and lower words. The results of this study provide useful information to strengthen competitiveness in the field of metaverse fashion design.
본 연구는 소셜 미디어 플랫폼 웨이보를 통해 중국에서 삼성 스마트폰을 구매한 경험이 있는 소비자와 없는 소비자들의 인식을 전반적으로 분석하였다. 본 연구에서 텍스트 마이닝, 빈도분석, 연결 중심성 분석, 의미 연결망 분석 및 CONCOR 분석 등 다양한 빅 데이터 분석 기법을 사용하였다. 분석 결과, 삼성 스마트폰에 대한 긍정적 인식은 외관 디자인, 카메라 기능, AI 기능, 화면 품질, 스펙 및 성능, 고급 브랜드 등을 포함한다. 반면 부정적 인식은 가격 문제, 사진의 노란색 문제, 충전 속도의 느림, 안전성 문제 등이 있다. 이러한 분석 결과는 향후 삼성의 중국 시장전략에 실질적인 개선을 가져오는 데 중요한 근거가 될 것이다.
본 연구는 신문 기사에서의 드론과 범죄에 관한 이슈를 탐색하는 데 목적이 있다. 한국언론재단의 온라인 뉴스 아카이브인 빅카인즈에서 1990년 1월 1일부터 2021년 5월 1일 기간 동안 11개 중앙지와 28개의 지역 종합지의 '드론'과 '범죄' 조건에 맞는 1,213건의 신문기사를 수집하였다. 그중 117개의 핵심 키워드를 대상으로 키워드빈도, 중심성분석, 네트워크 구조 구축, CONCOR 분석, 밀도 매트릭스 분석을 수행하였다. 분석결과, 주요 이슈는 8개로 분류되었으며 신문 기사 속의 드론과 범죄에 관한 보도 분석을 통해 국민의 사생활 보호와 불법 촬영 예방, 항행 안전 확보, 사회적 치안 유지와 해결, 테러와 전쟁 등에 관한 정부의 정책 수립과 사회적 문제점들이 중점적으로 논의되었음을 확인할 수 있었다. 본 연구는 드론과 범죄에 관련한 인문사회학적 연구 분야의 확장을 시도하며, 구체적으로 드론 관련 범죄에 대한 현황과 대책을 정책적 함의와 언론적 함의로 제언하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.