• Title/Summary/Keyword: Conceptual Modeling

Search Result 445, Processing Time 0.031 seconds

Data interoperability between authoring software and BIM system focused on the office building in conceptual design phase (설계 초기 단계 형상정보 연동 데이터 호환체계 개발 - 오피스 매스를 중심으로)

  • Park, Jung-Dae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.494-500
    • /
    • 2020
  • Owing to the complexity of shapes and elements, some difficulties are found in the modeling and sharing phases in a project at the earlier design stages. This paper extends the boundaries by suggesting the data interoperability between 3D modeling software, McNeel Rhino 3D and BIM system, and Autodesk® Revit® Architecture. The main research methodology is to link the architectural form data in the NURBS supporting the 3DM format, especially for integrating surface properties into the mass family template of Revit. This algorithm-driven interoperability approach using visual programming, such as Dynamo in conjunction with Autodesk®, can be applicable in a theoretical part and also a practical use-case. This paper summarizes these results as sequence guidelines and project template recommendations suggesting an efficient design process to interoperate geometric data with the BIM system to manipulate and control the regular and curved form of office buildings.

Design and Implementation of Cable Data Subscriber Network Management System using Object-oriented Modeling (객체지향 모델링을 이용한 케이블 데이터 가입자 망관리 시스템의 설계 및 구현)

  • Yun, Byeong-Soo;Ha, Eun-Ju;Kim, Che-Young
    • The KIPS Transactions:PartC
    • /
    • v.11C no.2
    • /
    • pp.269-276
    • /
    • 2004
  • There exist several types of distributed subscriber networks using Asymmetric Digital Subscriber Line(ADSL), Very high -bit rate Digital subscriber Line(VDSL), and Data Oner Cable Service Interface Specifications(DOCSIS). The efficient and concentrated network management of those several distributed subscribers networks and resources requires the general management information model of network, which has abstract and conceptual managed objects of the heterogeneous networks and its equipment to manage the integrated subscriber network. This paper presents the general Internet subscribers network modeling framework using RM-ODP to manage that network in the form of integrated hierarchy. This paper adopts the object-oriented development methodology with UML and designs and implements the HFC network of DOCSIS as an example of the subscriber network.

The Effect of Hierarchy Culture on Clan Leadership and Organizational Commitment of Export-Driven SMEs

  • KIM, Hyuk Young
    • The Journal of Industrial Distribution & Business
    • /
    • v.11 no.4
    • /
    • pp.19-30
    • /
    • 2020
  • Purpose: The purpose of this study examines the mediating effect of clan leadership in the relationship between hierarchy culture and organizational commitment. Most previous research focused on the relationship between organizational culture and organizational performance or organizational culture and job satisfaction. There are few empirical studies that focus on organizational commitment data because it is difficult to collect in many cases of export-driven small and medium sized enterprises. However, this research measures affective commitment, continuance commitment, and normative commitment differently than previous research, which is mostly focused on the hierarchy culture, clan leadership, and organizational commitment measurements. Research design, data, methodology: Conceptual research model is based on the studies of Cameron and Quinn (2011), and Gungor and Sahin (2018). The model is designed with three constructs such as hierarchy culture, organizational commitment, and clan leadership. The monitor culture and coordinator culture are as proxy for the hierarchy culture. The affective commitment, continuance commitment, and normative commitment are as proxy for the organizational commitment. And also the facilitator leadership and mentor leadership are as proxy for the clan leadership. Based on three hundred cases such as export-driven small and medium sized enterprises (SMEs), this study verify the hypothesis. Hypothesis was analyzed with the structural equation modeling. Results: In case of export-driven small and medium sized enterprises (SMEs), clan leadership acts as a mediator in the relationship between hierarchy culture and organizational commitment. In case of export-driven small and medium sized enterprises (SMEs) with high organizational commitment, clan leadership acts as a mediator in the relationship between hierarchy culture and organizational commitment. In case of export-driven small and medium sized enterprises (SMEs) with low organizational commitment, clan leadership did not act as a mediator in the relationship between hierarchy culture and organizational commitment. Conclusions: By controlling for the mediating effect of clan culture, this study have improved the academic contributions as well as policy and practical implications through empirical study of clan leadership that affect organizational commitment in the fields of hierarchy culture. In addition, this study means that the mediating effects on the variables of clan leadership were examined.

Beam on Elasto-Plastic Foundation Modeling of Tieback Walls (앵커토류벽의 탄소성보 해석에 관한 연구)

  • 김낙경
    • Geotechnical Engineering
    • /
    • v.14 no.6
    • /
    • pp.81-92
    • /
    • 1998
  • A beam on elasto-plastic foundation modeling of soldier pile and woodlagging tieback walls or anchored walls was developed and tested. An instrumented full scale tieback wall in sand was constructed at the National Geotechnical Experimentation Bite located on Texas A&M University. The experimental earth pressure deflection relationship (p-y curves) was developed from the measurements. The construction sequence was simulated in the proposed method. The conceptual methodology of an anchored wall design was introduced by using the proposed method. The proposed method was evaluated with the measurements of case histories in sand and clay. A parametric research was performed to study the most influencing factors for the proposed method. It is concluded that the proposed method represents a significant improvement on the prediction of bending moments and deflections of the properly designed walls.

  • PDF

Contaminant Fate and Transport Modeling for Risk Assessment (위해성평가를 위한 지중 오염물질 거동 모델 이용)

  • Kim, Mee-Jeong;Park, Jae-Woo
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.1
    • /
    • pp.44-52
    • /
    • 2007
  • This study reviewed the overall process of application of contaminant fate and transport model as part of risk assessment. Site characterization and establishment of a conceptual model prior to establishing or selecting a appropriate model were described. Types of models, model selection guidance, and generic site conditions for model application were presented, the process of model calibration, validation, and sensitivity analysis were reviewed. Objectives of modeling should be defined before model selection, and the complexity of selected models should balance the quantity and quality of available input data with the desired model output. If model output is highly sensitive to an assumed or default value of input parameter, or fate and transport models cannot be adequately calibrated or validated, consideration should be given to other options such as using measured data or using another model.

A Study of Coal Gasification Process Modeling (석탄가스화 공정 모델링에 관한 연구)

  • Lee, Joong-Won;Kim, Mi-Yeong;Chi, Jun-Hwa;Kim, Si-Moon;Park, Se-Ik
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.5
    • /
    • pp.425-434
    • /
    • 2010
  • Integrated gasification combined cycle (IGCC) is an efficient and environment-friendly power generation system which is capable of burning low-ranked coals and other renewable resources such as biofuels, petcokes and residues. In this study some process modeling on a conceptual entrained flow gasifier was conducted using the ASPEN Plus process simulator. This model is composed of three major steps; initial coal pyrolysis, combustion of volatile components, and gasification of char particles. One of the purposes of this study is to develop an effective and versatile simulation model applicable to numerous configurations of coal gasification systems. Our model does not depend on the hypothesis of chemical equilibrium as it can trace the exact reaction kinetics and incorporate the residence time calculation of solid particles in the reactors. Comparisons with previously reported models and experimental results also showed that the predictions by our model were pretty reasonable in estimating the products and the conditions of gasification processes. Verification of the accuracy of our model was mainly based upon how closely it predicts the syngas composition in the gasifier outlet. Lastly the effects of change oxygen are studied by sensitivity analysis using the developed model.

The Trend of System Level Thermal Management Technology Development for Aero-Vehicles (항공기 시스템 레벨 열관리 기술개발 동향)

  • Kim, Youngjin;Son, Changmin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.1
    • /
    • pp.35-42
    • /
    • 2016
  • Modern aircraft is facing the increase of power demands and thermal challenges. In accordance with the application of more electric technology and advanced mission requirement, aircraft system requires increase of power generation and it cause increase of internal heat generation. Simultaneously, restrictions have significantly been imposed to the thermal management system. Modern aircraft must maintain low radar observability and infra-red signature. In addition, new composite aircraft skins have reduced the amount of heat that can be rejected to the environment. The combination of these characteristics has increased the challenges faced by thermal management. In order to mitigate the thermal challenges, the concept of system level thermal management should be applied and new modeling and simulation tools need to be developed. To develop and utilize system level thermal management technology, three key points are considered. Firstly, the performance changes of subsystems and components must be assessed at an integrated thermal system. It is because that each subsystem and component interacts with other subsystems or components and it can directly effects on overall system performance. Secondly, system level thermal management requirements and solutions must be evaluated early in conceptual design process as vehicle and propulsion system configuration decisions are being made. Finally, new component level thermal management technologies must focus on reducing heat generation and increasing the availability of heat sinks.

An analysis of U.S. pre-service teachers' modeling and explaining 0.14m2 (넓이 0.14m2에 대한 미국 예비교사들의 모델링과 설명 분석)

  • Lee, Ji-Eun;Lim, Woong
    • The Mathematical Education
    • /
    • v.58 no.3
    • /
    • pp.367-381
    • /
    • 2019
  • This investigation engaged elementary and middle school pre-service teachers in a task of modeling and explaining the magnitude of $0.14m^2$ and examined their responses. The study analyzed both successful and unsuccessful responses in order to reflect on the patterns of misconceptions relative to pre-service teachers' prior knowledge. The findings suggest a need to promote opportunities for pre-service teachers to make connections between different domains through meaningful tasks, to reason abstractly and quantitatively, to use proper language, and to refine conceptual understanding. While mathematics teacher educators (MTEs) could use such mathematical tasks to identify the mathematical content needs of pre-service teachers, MTEs generally use instructional time to connect content and pedagogy. More importantly, an early and consistent exposure to a combined experience of mathematics and pedagogy that connects and deepens key concepts in the program's curriculum is critical in defining the important content knowledge for K-8 mathematics teachers.

An Analysis of the Effect of Climate Change on Nakdong River Environmental Flow (낙동강 유역 환경유량에 대한 기후변화의 영향 분석)

  • Lee, A Yeon;Kim, Sangdan
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.3
    • /
    • pp.273-285
    • /
    • 2011
  • This study describes the modeling of climate change impact on runoff across southeast Korea using a conceptual rainfall-runoff model TANK and assesses the results using the concept of environmental flows developed by International Water Management Institute. The future climate time series is obtained by scaling the historical series, informed by 4 global climate models and 3 greenhouse gas emission scenarios, to reflect a $4.0^{\circ}C$ increase at most in average surface air temperature and 31.7% increase at most in annual precipitation, using the spatio-temporal changing factor method that considers changes in the future mean seasonal rainfall and potential evapotranspiration as well as in the daily rainfall distribution. Although the simulation results from different global circulation models and greenhouse emission scenarios indicate different responses in flows to the climate change, the majority of the modeling results show that there will be more runoff in southeast Korea in the future. However, there is substantial uncertainty, with the results ranging from a 5.82% decrease to a 48.15% increase in the mean annual runoff averaged across the study area according to the corresponding climate change scenarios. We then assess the hydrologic perturbations based on the comparison between present and future flow duration curves suggested by IMWI. As a result, the effect of hydrologic perturbation on aquatic ecosystems may be significant at several locations of the Nakdong river main stream in dry season.

Utilizing Airborne LiDAR Data for Building Extraction and Superstructure Analysis for Modeling (항공 LiDAR 데이터를 이용한 건물추출과 상부구조물 특성분석 및 모델링)

  • Jung, Hyung-Sup;Lim, Sae-Bom;Lee, Dong-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.3
    • /
    • pp.227-239
    • /
    • 2008
  • Processing LiDAR (Light Detection And Ranging) data obtained from ALS (Airborne Laser Scanning) systems mainly involves organization and segmentation of the data for 3D object modeling and mapping purposes. The ALS systems are viable and becoming more mature technology in various applications. ALS technology requires complex integration of optics, opto-mechanics and electronics in the multi-sensor components, Le. data captured from GPS, INS and laser scanner. In this study, digital image processing techniques mainly were implemented to gray level coded image of the LiDAR data for building extraction and superstructures segmentation. One of the advantages to use gray level image is easy to apply various existing digital image processing algorithms. Gridding and quantization of the raw LiDAR data into limited gray level might introduce smoothing effect and loss of the detail information. However, smoothed surface data that are more suitable for surface patch segmentation and modeling could be obtained by the quantization of the height values. The building boundaries were precisely extracted by the robust edge detection operator and regularized with shape constraints. As for segmentation of the roof structures, basically region growing based and gap filling segmentation methods were implemented. The results present that various image processing methods are applicable to extract buildings and to segment surface patches of the superstructures on the roofs. Finally, conceptual methodology for extracting characteristic information to reconstruct roof shapes was proposed. Statistical and geometric properties were utilized to segment and model superstructures. The simulation results show that segmentation of the roof surface patches and modeling were possible with the proposed method.