• Title/Summary/Keyword: Conceptual Configuration Design

Search Result 130, Processing Time 0.023 seconds

U sing Artificial Intelligence in the Configuration Design of a High-Speed Train (인공신경망을 이용한 고속철도의 최고속도 예측과 구성설계)

  • 이장용;한순흥
    • Korean Journal of Computational Design and Engineering
    • /
    • v.8 no.4
    • /
    • pp.222-230
    • /
    • 2003
  • Artificial intelligence has been used in the configuration design stage of high-speed train. The traction system of a high-speed train is composed of transformers, motor blocks, and traction motors of which locations and number in the trainset should be determined in the early stage of the train conceptual design. Components of the traction system are heavy parts in the train, so it gives strong influence to the top speeds and overall train configuration of high-speed trains. Top speeds have been predicted using the neural network with the associated data of the traction system. The neural networks have been learned with data sets of many commercially operated high-speed trains, and the predicted results have been compared with the actual values. The configuration design of the train set of a high-speed train determines the basic specification of the train and layout of the traction system. The neural networks is a useful design tool when there is not sufficient data for the configuration design and we need to use the existing data of other train for the prediction of trainset in development.

Advanced Design Synthesis Process for Rapid Aircraft Development (신속한 항공기 개발을 위한 통합 개념설계 프로세스에 대한 연구)

  • Park, Seung Bin;Park, Jin Hwan;Jeon, Kwon-Su;Kim, Sangho;Lee, Jae-Woo
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.9 no.2
    • /
    • pp.83-90
    • /
    • 2013
  • Integrated aircraft synthesis process for rapid analysis and design is described in this paper. Data flow between different analysis fields is described in details. All the data are divided into several groups according to importance and source of the data. Analysis of design requirements and certification regulations is carried out to determine baseline configuration of an aircraft. Overall design process can be divided into initial sizing, conceptual and preliminary design phases. Basic data for conceptual design are obtained from initial sizing, CAD and geometry analysis. Basic data are required input for weight, aerodynamics and propulsion analyses. Results of this analysis are used for stability and control, performance, mission, and load analysis. Feasibility of design is verified based on analysis results of each discipline. Design optimization that involves integrated process for aircraft analysis is performed to determine optimum configuration of an aircraft on a conceptual design stage. The process presented in this paper was verified to be used for light aircraft design.

Re-Design of Wing Flap for Very Light Jet Aircraft Incorporating Airworthiness Certification (항공안전인증을 고려한 소형제트항공기 플랩 재설계)

  • Yoon, Jung-Won;Lee, Hyo-Jin;Lee, Jae-Woo;Kim, Sang-Ho;Byun, Yung-Hwan;Kim, Im-Gun
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.19 no.3
    • /
    • pp.1-9
    • /
    • 2011
  • In this paper, a conceptual design process for Very Light Jet aircraft has been proposed incorporating aircraft safety certification. During the proposed design process, satisfaction of the airworthiness certification for an intermediate resulting aircraft configuration is evaluated and then redesigns are carried out if necessary and until the designed aircraft configuration satisfies the airworthiness requirements. Certification database has been developed using FAR 23, AC 23, KAS 23, and CS 23 as the airworthiness certification. Based on the developed certification database Design Certifcation Related Table has been produced to use the airworthiness requirements as design constraints in the propsed design process. Using Quality Function Deployment the design variables for a redesign are carefully selected and a design optimization is performed. To demonstrate the feasibility and effectiveness of rapid aircraft conceptual design using the proposed approach, a Very Light Jet design optimization including a redesign of wing flap has been performed and the design results have been presented.

Adaptable conceptual aircraft design model

  • Fioriti, Marco
    • Advances in aircraft and spacecraft science
    • /
    • v.1 no.1
    • /
    • pp.43-67
    • /
    • 2014
  • This paper presents a new conceptual design model ACAD (Adaptable Conceptual Aircraft Design), which differs from the other models due to its considerable adaptability to the different classes of aircraft. Another significant feature is the simplicity of the process which leads to the preliminary design outputs and also allowing a substantial autonomy in design choices. The model performs the aircraft design in terms of total weight, weight of aircraft subsystems, airplane and engine performances, and basic aircraft configuration layout. Optimization processes were implemented to calculate the wing aspect ratio and to perform the design requirements fulfillment. In order to evaluate the model outcomes, different test cases are presented: a STOL ultralight airplane, a new commuter with open-rotor engines and a last generation fighter.

Development of Integrated Design System for Structural Design of Machine Tools (공작기계 구조물 설계를 위한 통합설계 시스템 개발)

  • 박면웅;손영태;조성원
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.1
    • /
    • pp.229-239
    • /
    • 2003
  • The design process of machine tools is regarded as a sequential, discrete, and inefficient works as it requires various kinds of design tools and many working hours. This paper describes an integrated design system embedding a design methodology that can support efficiently and systematically the conceptual structural design of machine tools. The system is a knowledge-based design system and has four machine-tool-specific functional modules including configuration design, configuration analysis, structure design, and structural analysis support module. Through the configuration design and analysis module, a machine configuration appropriate for design requirements is selected, and then the arrangement of ribs fer each structural part is decided in the structure design module. Also, the structural analysis support module is used to evaluate design result by utilizing structural analysis software, ANSYS. The system is applied to design of a tapping machine, and shows that the machine structure can be designed fast and conveniently by processing each design step interactively.

체공형 부양선(Aerostat) 개념설계

  • Lee, Yung-Gyo;Kim, Dong-Min;Yeom, Chan-Hong
    • Aerospace Engineering and Technology
    • /
    • v.4 no.1
    • /
    • pp.31-38
    • /
    • 2005
  • Conceptual design of an Aerostat was completed. Configuration was determined based on wind tunnel test results of aeostat hulls to have longitudinal static stability. Hull surface area and volume were obtained by using of Cubic spline method for given configuration and length. Final length of a hull was determined by iteration process. Cable tension and payload were estimated for conceptual design. A parametric study was performed for various weight and misson altitude. As results, a 30m class aerostat was designed and described.

  • PDF

The Optimized Design Method of Vehicle for Weight-Reduction (무게절감을 위한 차량 최적 설계 기법)

  • Lee, Jeong-Ick
    • Korean Journal of Computational Design and Engineering
    • /
    • v.12 no.5
    • /
    • pp.376-381
    • /
    • 2007
  • The geometric configuration in the weight-reduced structure is very required to be started from the conceptual design with low cost, high performance and quality. In this point, a structural-topological shape concerned with conceptual design of structure is important. The method used in this paper combines three optimization techniques, where the shape and physical dimensions of the structure and material distribution are hierachically optimized, with the maximum rigidity of structure and lightweight.

다목적 실용위성 2호 기계 시스템 개념설계

  • Kim, Gyu-Seon
    • Aerospace Engineering and Technology
    • /
    • v.1 no.1
    • /
    • pp.42-54
    • /
    • 2002
  • In December of 1997, Korea Aerospace Research Institute begin to develope the conceptual design of Kompsat2 as the Kompsat1 design is nearly completed. Basic direction of this design was set up to utilized the heritage of Kompsat1 and modify the payload module to accommodate the new high resolution space borne camera. And in the early stage of this design, total system configuration design study was conducted based on 1st level payload information. In this paper, mechanical system design at various stage is documented and this will be used as a path finder or guidelines in the future feasibility study or conceptual design.

  • PDF

Parametric Design Techniques for Optimal RC Helicopter Design (RC 헬리콥터 최적화 설계를 위한 변수설계 기법)

  • Lee, Jae-Young;Hwang, Ho-Yon;Kim, Jung-Yub
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.16 no.4
    • /
    • pp.1-11
    • /
    • 2008
  • This research presents a study for the knowledge-based configuration design development of a RC (remote control) helicopter. Parametric design and knowledge based design concepts are introduced for rapid design changes and analyses using commercial CAD software, CATIA(R) Knowledgeware module. It is crucial for RC helicopter design because it enables rapid conceptual design through instant configuration changes. Positions and dimensions of RC helicopter parts were used as design parameters. As an example, positions of CG(center of gravity) points were traced and plotted as the configuration changes. Further research should be performed in areas of user interfaces and web-based multi-user environments instead of using Excel data sheets.

  • PDF

Knowledge based configuration design of a train vehicle body using CATIA (CATIA를 활용한 철도차량 차체 지식기반 형상설계)

  • Hwang Ho-Yon;Lee Jae-Young;Yang Doh-Chul;Kwon Tae-Soo;Jung Hyun-Seung
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.362-369
    • /
    • 2005
  • In this paper, a research for the knowledge based configuration design software development of a train vehicle has been presented. Parametric design and knowledge based design concepts have been introduced for rapid design changes and analyses using a commercial CAD software, $CATIA^{/circledR}$ Knowledgeware module. Positions and dimensions of door, small window, large window, and number of seats were used as design parameters. It is crucial for train vehicle design because it enables rapid conceptual design by instant configuration changes. The results of this research can be used as one sub module of the multidisciplinary train vehicle design software and provide a basic data for rolling stock behavior and driver cab ergonomics of a train vehicle.

  • PDF