• 제목/요약/키워드: Concepts of chance

검색결과 45건 처리시간 0.023초

머스 커닝햄과 로버트 라우센버그의 협업 연구 (Study on the Cooperation of Merce Cunningham and Robert Rauschenberg)

  • 박성혜
    • 한국콘텐츠학회논문지
    • /
    • 제15권10호
    • /
    • pp.105-115
    • /
    • 2015
  • 다양한 장르의 결합은 부단 최근의 진행된 새로운 경향이 아니다. 각 분야의 한계와 새로운 모색을 위하여, 혹은 한계를 넘어 이전과는 전혀 다른 비젼과 새로움을 지향하는 하나의 발로이다. 이에 공연예술에서 1960년대 전후로 선두적인 작업을 진행한 머스 커닝햄과 로버트 라우센버그의 협업 작업에 주목한다. 두 작가의 예술적 협업은 공연예술에서는 이전과 다른 새로운 개념과 실행하는 선도적 작업으로 기록된다. 예측할 수 없는 즉흥적 만남을 통한 우연성의 발로와 혁신적인 실험을 통해 무용과 회화의 새로운 가능성을 타진해 본다. 두 사람의 결별 이후에는 머스 커닝햄은 극장이라는 공간에서 컴퓨터 공간인 가상 공간에서 진행되는 비디오 댄스로, 그리고 로버트 라우센버그는 컴바인이라는 새로운 자신의 예술적 개념을 창출한다. 이에 1954년부터 1964년까지 진행된 협업 작업에서 두 예술가에게 예술적 의미가 존재했던 작품을 중심으로 어떻게 우연성, 비영속성, 무정형의 개념을 실질적으로 산출했는지를 연구한다.

우리나라 초등학교 수학에서 가능성 지도에 대한 고찰과 개선 방안 탐색 (A study on the mathematics curriculum for elementary school in Korea to improve teaching of chance)

  • 고은성;탁병주
    • 한국수학교육학회지시리즈A:수학교육
    • /
    • 제61권1호
    • /
    • pp.29-45
    • /
    • 2022
  • 본 연구는 우리나라 초등학교 수학과 교육과정에서 가능성 지도가 우연(chance)과 무작위성(randomness)의 개념과 관련하여 어떻게 이루어지고 있는지 비판적으로 고찰하여 문제점을 분석하고자 한다. 이를 위해 먼저 우연과 무작위성 개념에 대해 살펴보고, 이를 바탕으로 우리나라 초등학교 수학에서 가능성 지도의 문제점을 제시하였다. 우리나라 초등학교 수학과 교육과정에서는 자료에 기반을 둔 추론의 경험이 결여되어 있었으며, 무작위성 지도가 적절히 이루어지지 않고 있었다. 또한 표본공간의 지도가 누락되면서 모순적인 소재가 활용되고 있었다. 마지막으로 가능성에 대한 지도가 특정 학년에 편중되어 지도되고 있음을 지적하였다. 확률 지도의 개선을 위해 크게 확률 실험의 지도와 표본공간의 지도를 제안하며, 또한 특정 학년에 편중된 구성을 위해 자료 영역의 내용을 조절할 것을 제안한다.

AHP를 활용한 디자인 콘셉트의 창의성 평가에 관한 연구 (Creativity evaluation of design concepts using AHP)

  • 서창원;박영택
    • 품질경영학회지
    • /
    • 제44권4호
    • /
    • pp.855-867
    • /
    • 2016
  • Purpose: Evaluation of the creativity level of design concepts. Methods: 14 winners of design concepts area of the 2015 Red dot Award are used to evaluate the creativity level of design concepts. Among the 14 winners, one is the highest award (; luminary) winner, 4 are the second highest award(; best of the best) winners, and the remaining 9 are winners. AHP model was developed to evaluate the creativity levels of design concepts, and applied to the 14 winners of the reddot award. Results: Originality and practicality have been used to evaluate creativity level of new product ideas in the previous study. In this study, it is identified that originality is composed of innovativeness and topicality, and practicality is composed of utility and realizability. The design concepts which won higher level awards have higher level of originality. Among the two dimensions of originality, topicality has more significant relationship than innovativeness. Conclusion: The design concepts with higher level of originality, especially higher level of topicality, have a fair chance to be recognized as creative. It is notable that higher level of originality does not guarantee higher profit. According to the previous studies on the commercial success of new products, practicality is more important than originality.

고등 수학 개념의 올바른 이해를 위한 유의미한 교수법 탐색 (A Search for the meaningful method of teaching for Correct Understanding of Advanced Mathematics Concepts)

  • 한길준;우호식
    • 한국수학교육학회지시리즈A:수학교육
    • /
    • 제40권2호
    • /
    • pp.241-252
    • /
    • 2001
  • Many high school students are having difficulties for studying advanced mathematics concepts. It is more complicated than in junior high school and they are losing interest and confidence. In this paper, advanced mathematics concepts are not just basic concepts such as natural numbers, fractions or figures that can be learned through life experience but concepts that are including variables, functions, sets, tangents and limits are more abstract and formal. For the students to understand these ideas is too heavy a burden and so many of the students concentrate their efforts on just memorizing and not understanding. It is necessary to search for a meaningful method of teaching for advanced mathematics that covers deductive methods and symbols. High school teachers are always asking themselves the following question, “How do we help the students to understand the concept clearly and instruct it in a meaningful way?” As a solution we propose the followings : I. To ensure they have the right understanding of concept image involved in the concept definition. II. Put emphasis on the process of making mental representations and the role of intuition. III. To instruct students and understand them as having many chance of the instructional conversation. In conclusion, we studied the meaningful method of teaching with the theory of Ausubel related to the above proposed methods. To understand advanced mathematics concepts correctly, the mutual understanding of both teachers and students is necessary.

  • PDF

과학체험행사 참가 팀의 활동 형태 및 도우미 학생의 역할 분석 (The Analysis of Participant Teams' Activity Types and Roles of Assistant Students in Science Festival)

  • 전영석;임미량
    • 한국초등과학교육학회지:초등과학교육
    • /
    • 제31권2호
    • /
    • pp.188-196
    • /
    • 2012
  • Science festivals have occupied a very important axle in informal science education that enables students to experience the amazement of scientific experiments to think over scientific principals beyond the formal education in the classrooms. Among the concerned person, the most benefit-taken group may be the assistant who help the participants experience the activities in the festival. In order to find out the ways to make the student assistant's participation into a meaningful education experience, we analyzed the types of the activities in the science festival as well as the characteristics of the interaction between the student-assistants and the participating students are studied. The research findings are as follows: First, most activities in the science festival had related to the scientific concepts or principals; however, the understanding of the concepts and principals didn't highly affect the procedure of the activities. In many cases the students operated and made results without checking the related concepts or principals. Second, the student-assistants showed the consistency of operation in guiding their activities. They were explaining mainly the process of the experiments without giving a chance to think of related concepts or principles. We suggest that teacher should consider the student-assistants' learning in the festival as well as that of the participants.

초등수학에서 동화의 활용 방안 탐색 (A Study on the Practical Use of Fairy-tales in Elementary Mathematics Education)

  • 김상룡
    • 한국수학교육학회지시리즈C:초등수학교육
    • /
    • 제6권1호
    • /
    • pp.29-40
    • /
    • 2002
  • Fairy-tales give students opportunities to build connections between a problem-solving situation and mathematics as well as to communicate solutions through writing, symbols, and diagrams. Therefore, the purpose of this paper is to introduce how to use fairy-tales in elementary mathematics classroom in order to develope student's mathematical concepts and process in terms of the following areas: ⑴ reconstructing literature ⑵ understanding concepts ⑶ problem posing activity. To be useful, mathematics should be taught in contexts that are meaningful and relevant to learners. Therefore using fairy-tales as a vehicle to teach mathematics gives students a chance to develope mathematics understanding in a natural, meaningful way, and to enhance problem posing and problem solving ability. Further, future study will continue to foster how fairy-tales literatures will enhance children's mathematics knowledge and influence on their mathematics performance.

  • PDF

범례 제시를 통한 도형 개념 지도 방안 (Building Geometrical Concepts by Using both Examples and Nonexamples)

  • 김수미;정은숙
    • 대한수학교육학회지:수학교육학연구
    • /
    • 제15권4호
    • /
    • pp.401-417
    • /
    • 2005
  • 이 연구는 새롭게 전달될 내용이 학습자의 기존 도식을 상회하는 고차적인 경우, 예와 반례를 통해 학습되는 것이 효과적이라는 영국의 수학교육자 Skemp의 이론을 근간으로 하여, 우리나라의 실정에 맞는 도형 개념 지도방안을 구안하고자 한다. 이를 위해 범례 제시법에 관련된 선행 연구가 고찰되었으며, 개념 학습을 위한 원형모형 이론이 고찰되었다. 또한 우리나라 7차 수학과 교과서의 도형 단원이 분석되었다. 이러한 고찰을 토대로 이 연구에서는 예와 반례를 통한 6단계 수업 모형을 고안하였으며, 4학년 아동을 대상으로 도형 영역의 수업을 실시하였다 수업 결과, 예와 반례를 통한 지도는 아동의 성취 수준에 관계없이 도형 개념을 형성하고, 개념간의 위계 관계를 이해하는 데 적합하였으며, 의사소통을 촉진시키는 것으로 나타났다

  • PDF

학교 수학에서 접선 개념 교수 방안 연구 (Teaching and Learning Concepts of Tangent in School Mathematics)

  • 임재훈;박교식
    • 대한수학교육학회지:수학교육학연구
    • /
    • 제14권2호
    • /
    • pp.171-185
    • /
    • 2004
  • 원의 접선에 대한 초기 학습 경험은 접선에 대한 부적절한 직관을 형성하여 이후 학습의 장애가 될 수 있다. 이 논문은 이전 학교급 또는 학년에서의 학습을 통해 형성된 접선 개념을 이후 학교급 또는 학년에서의 학습 과정에서 반성, 수정, 개선하는 학습 경험이 이루어지도록 하는 방안을 모색한 것이다. 이 연구에서 제시한 방향을 따라 원의 접선에서 시작하여, 곡선의 맥락을 확대하면서 기존의 접선 개념을 수정하는 과정을 거치는 동안, 학생들은 초기 학습 단계에서 형성된 '곡선과 한 점에서 만난다.' 또는 '곡선을 스치고 지나간다.'와 같은 관념들이 제한된 맥락에서는 접선의 정의로서 타당하지만, 보다 일반화된 맥락에서는 접선의 본질이 될 수 없음을 알 수 있다. 그리고 할선의 극한이나 중근, 미분계수와 관련된 접선의 정의의 의미를 이해하고 그 장점을 인식할 수 있다.

  • PDF

특이 지역 환경에 대한 야외 학습 연구 -초등과학 지질 영역을 중심으로- (A Study on Field Trip of Specific-Region Environment -Focus on 'Geological Unit' of Elementary Science-)

  • 홍승호
    • 한국환경교육학회지:환경교육
    • /
    • 제21권3호
    • /
    • pp.1-12
    • /
    • 2008
  • This study is aimed at suggesting ways to develop field trip or learning materials focusing on environment of Jeju seashore in order to make an effective field trip. To perform these purposes, the contents and concepts were analyzed from environment-related 'geological unit' of elementary science textbook. Afterwards, the places having the geological features in coincidence with them are chosen, and investigated, and these regions can develop into geological teaming places for field trip. Each teaming spot focuses on understanding and finding out the characteristic geological environment of rock shore, gravel shore, sand shore, shellfish shore, and tideland shore among Jeju shores. When field trip is conducted at the preparatory stage, students can get advance knowledge on geological concepts from textbook. The activity record paper is presented at the field trip stage where students observe geological phenomena on their own. After field trip is finished, the summary stage is given to solve some problems on the basis of the observed contents. The developed data from this research have its regional limits, but is surely useful for teachers who try to plan field trip when they especially choose the right field trip spots, or plan to make the process for field trip preparation of the environmental education. Furthermore, with this survey and activities, students can take the chance to improve the learning effect through their own experience on environment of Jeju seashore.

  • PDF

통계적 개념 발달에 관한 인식론적 고찰 (An Epistemological Inquiry on the Development of Statistical Concepts)

  • 이영하;남주현
    • 한국수학교육학회지시리즈A:수학교육
    • /
    • 제44권3호
    • /
    • pp.457-475
    • /
    • 2005
  • We have inquired on what the statistical classes of the secondary schools had been aiming to, say the epistermlogical objects. And we now appreciate that the main obstacle to the systematic articulation is the lack of anticipation on what the statistical concepts are. This study focuses on the ingredients of the statistical concepts. Those are to be the ground of the systematic articulation of statistic courses, especially of the one for the school kids. Thus we required that those ingredients must satisfy the followings. i) directly related to the contents of statistics ii) psychologically developing iii) mutually exclusive each other as much as possible iv) exhaustive enough to cover all statistical concepts We examined what and how statisticians had been doing and the various previous views on these. After all we suggest the following three concepts are the core of conceptual developments of statistic, say the concept of distributions, the summarizing ability and the concept of samples. By the concepts of distributions we mean the frequency views on each random categories and that is developing from the count through the probability along ages. Summarizing ability is another important resources to embed his probe with the data set. It is not only viewed as a number but also to be anticipated as one reflecting a random phenomena. Inductive generalization is one of the most hazardous thing. Statistical induction is a scientific way of challenging this and this starts from distinguishing the chance with the inevitable consequences. One's inductive logic grows up along with one's deductive arguments, nevertheless they are different. The concept of samples reflects' one's view on the sample data and the way of compounding one's logic with the data within one's hypothesis. With these three in mind we observed Korean Statistic Curriculum from K to 12. Distributional concepts are dealt with throughout but not sequenced well. The way of summarization has been introduced in the 1 st, 5th, 7th and the 10th grade as a numerical value only. One activity on the concept of sample is given at the 6th grade. And it jumps into the statistical reasoning at the selective courses of ' Mathematics I ' or of ' Probability and Statistics ' in the grades of 11-12. We want to suggest further studies on the developing stages of these three conceptual features so as to obtain a firm basis of successive statistical articulation.

  • PDF