• Title/Summary/Keyword: Concepts Optimization

Search Result 120, Processing Time 0.032 seconds

Structural and Layout Design Optimization of Ecosystem Control Structures(1) -Characteristics of Mooring Force and Motion Control of the Longline Type Scallop Culturing Facility- (생태계 제어 시설물의 설계 및 배치 최적화(1) -연승식 양식시설의 계류력 특성 및 동요저감에 관한 연구-)

  • RYU Cheong-Ro;KIM Hyeon-Ju
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.28 no.1
    • /
    • pp.35-48
    • /
    • 1995
  • To develop the optimal design method for the longline type scallop culturing facilities in the open sea numerical calculations and hydraulic model experiments are carried out for the stability and function optimization. Using the results for the motion and tension of the facilities, stable design concepts and effects of motion control system by vertical anchor and resistance discs art discussed. The results of this study that can be applied to the design are as follows: 1) Total external forces by design wave $(H_{1/3}\;=\;6,7\;m,\;T_{1/3}\;=\;12sec)$ at the coastal waters of Jumunjin for unit facility (one main line) are estimated to 5-20 tons, and required anchor weights are 10-40 tons in the case of 2-point mooring system. Though the present facilities are stable to steady currents, but is unstable to the extreme wave condition of return period of 10 years. 2) The dimensions and depth of array systems must be designed considering the ecological environments as well as the physical characteristics including the mooring and holding forces that are proportional to the length and relative depth of main line to wave length, and the number of buoys and nets. 3) Oscillation of the facility is influenced by water particle motion and the weight of hanging net, and is excited at both edge, especially at the lee side. To reduce the motion of the nets, the vertical anchoring system and the resistence disc method are recommended by the experimental results, 4) The damage of rope near the anchor by abrasion should be prevented using the ring-type connection parts or anchor chains.

  • PDF

Opitmal Design Technique of Nielsen Arch Bridges by Using Genetic Algorithm (유전자 알고리즘을 이용한 닐센아치교의 최적설계기법)

  • Lee, Kwang Su;Chung, Young Soo
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.4
    • /
    • pp.361-373
    • /
    • 2009
  • Using the genetic algorithm, the optimal-design technique of the Nielsen arch bridge was proposed in this paper. The design parameters were the arch-rise ratio and the steel weight ratio of the Nielsen arch bridge, and optimal-design techniques were utilized to analyze the behavior of the bridge. The optimal parameter values were determined for the estimated optimal level. The parameter determination requires the standardization of the safety, utility, and economic concepts as the critical factors of a structure. For this, a genetic algorithm was used, whose global-optimal-solution search ability is superior to the optimization technique, and whose object function in the optimal design is the total weight of the structure. The constraints for the optimization were displacement, internal stress, and time and space. The structural analysis was a combination of the small displacement theory and the genetic algorithm, and the runtime was reduced for parallel processing. The optimal-design technique that was developed in this study was employed and deduced using the optimal arch-rise ratio, steel weight ratio, and optimal-design domain. The optimal-design technique was presented so it could be applied in the industry.

Designing Modularization Method for Digital Twin: Focusing on the Noodle Manufacturing Process (디지털 트윈의 모듈화 기법 설계: 면 제조 공정을 중심으로)

  • Chan Woo Kwon;Seok Hyun Song
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.2
    • /
    • pp.26-33
    • /
    • 2024
  • There has been a recent surge of interest in the Digital Twin technology. The Digital Twin is technique for optimizing objects by simulating physical phenomena or objects through computer-based simulations. Currently, single Digital Twin is being developed to optimize processes limited to specific fields, but there is a limitation in that the independent Digital Twins cannot analyze the vast and complex processes of the real world. To overcome this, the concept of federated Digital Twin has been introduced. To date, the federated Digital Twin research has primarily focused on how to optimize macroscopic objects such as cities. However, by leveraging the interconnected nature of twins, existing implementations of the single Digital Twins can be modularized. In this study, we define the concepts and interrelationships of the single Digital Twin and the federated Digital Twin from a functional perspective related to process optimization and design a modularization technique for the single Digital Twin using the federated Digital Twin. Furthermore, this study aims to discuss the proposed methodology's efficacy by designing a model applying modularization to a real-world fabric manufacturing case.

The Future of NVH Research - A Challenge by New Powertrains

  • Genuit, Ing. K.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2010.05a
    • /
    • pp.48-48
    • /
    • 2010
  • Sound quality and NVH-issues(Noise, Vibration and Harshness) of vehicles has become very important for car manufacturers. It is interpreted as among the most relevant factors regarding perceived product quality, and is important in gaining market advantage. The general sound quality of vehicles was gradually improved over the years. However, today the development cycles in the automotive industry are constantly reduced to meet the customers' demands and to react quickly to market needs. In addition, new drive and fuel concepts, tightened ecological specifications, increase of vehicle classes and increasing diversification(increasing market for niche vehicles), etc. challenge the acoustic engineers trying to develop a pleasant, adequate, harmonious passenger cabin sound. Another aspect concerns the general pressure for reducing emission and fuel consumption, which lead to vehicle weight reductions through material changes also resulting in new noise and vibration conflicts. Furthermore, in the context of alternative powertrains and engine concepts, the new objective is to detect and implement the vehicle sound, tailored to suit the auditory expectations and needs of the target group. New questions must be answered: What are appropriate sounds for hybrid or electric vehicles? How are new vehicle sounds perceived and judged? How can customer-oriented, client-specific target sounds be determined? Which sounds are needed to fulfil the driving task, and so on? Thus, advanced methods and tools are necessary which cope with the increasing complexity of NVH-problems and conflicts and at the same time which cope with the growing expectations regarding the acoustical comfort. Moreover, it is exceedingly important to have already detailed and reliable information about NVH-issues in early design phases to guarantee high quality standards. This requires the use of sophisticated simulation techniques, which allow for the virtual construction and testing of subsystems and/or the whole car in early development stages. The virtual, testing is very important especially with respect to alternative drive concepts(hybrid cars, electric cars, hydrogen fuel cell cars), where complete new NVH-problems and challenges occur which have to be adequately managed right from the beginning. In this context, it is important to mention that the challenge is that all noise contributions from different sources lead to a harmonious, well-balanced overall sound. The optimization of single sources alone does not automatically result in an ideal overall vehicle sound. The paper highlights modern and innovative NVH measurement technologies as well as presents solutions of recent NVH tasks and challenges. Furthermore, future prospects and developments in the field of automotive acoustics are considered and discussed.

  • PDF

Design of a morphing actuated aileron with chiral composite internal structure

  • Airoldi, Alessandro;Quaranta, Giuseppe;Beltramin, Alvise;Sala, Giuseppe
    • Advances in aircraft and spacecraft science
    • /
    • v.1 no.3
    • /
    • pp.331-351
    • /
    • 2014
  • The paper presents the development of numerical models referred to a morphing actuated aileron. The structural solution adopted consists of an internal part made of a composite chiral honeycomb that bears a flexible skin with an adequate combination of flexural stiffness and in-plane compliance. The identification of such structural frame makes possible an investigation of different actuation concepts based on diffused and discrete actuators installed in the skin or in the skin-core connection. An efficient approach is presented for the development of aeroelastic condensed models of the aileron, which are used in sensitivity studies and optimization processes. The aerodynamic performances and the energy required to actuate the morphing surface are evaluated and the definition of a general energetic performance index makes also possible a comparison with a rigid aileron. The results show that the morphing system can exploit the fluid-structure interaction in order to reduce the actuation energy and to attain considerable variations in the lift coefficient of the airfoil.

Damage detection of plate-like structures using intelligent surrogate model

  • Torkzadeh, Peyman;Fathnejat, Hamed;Ghiasi, Ramin
    • Smart Structures and Systems
    • /
    • v.18 no.6
    • /
    • pp.1233-1250
    • /
    • 2016
  • Cracks in plate-like structures are some of the main reasons for destruction of the entire structure. In this study, a novel two-stage methodology is proposed for damage detection of flexural plates using an optimized artificial neural network. In the first stage, location of damages in plates is investigated using curvature-moment and curvature-moment derivative concepts. After detecting the damaged areas, the equations for damage severity detection are solved via Bat Algorithm (BA). In the second stage, in order to efficiently reduce the computational cost of model updating during the optimization process of damage severity detection, multiple damage location assurance criterion index based on the frequency change vector of structures are evaluated using properly trained cascade feed-forward neural network (CFNN) as a surrogate model. In order to achieve the most generalized neural network as a surrogate model, its structure is optimized using binary version of BA. To validate this proposed solution method, two examples are presented. The results indicate that after determining the damage location based on curvature-moment derivative concept, the proposed solution method for damage severity detection leads to significant reduction of computational time compared with direct finite element method. Furthermore, integrating BA with the efficient approximation mechanism of finite element model, maintains the acceptable accuracy of damage severity detection.

A TQM case of Centralized Sequential Decision-making Problem

  • Chang, Cheng-Chang;Chu, Yun-Feng
    • International Journal of Quality Innovation
    • /
    • v.4 no.1
    • /
    • pp.131-147
    • /
    • 2003
  • This paper considers that a public department under specialized TQM manpower constraints have to implement multiple total quality management (TQM) policies to promote its service performance (fundamental goal) by adopting a centralized sequential advancement strategy (CSAS). Under CSAS, the decision-makers (DMs) start off by focusing specialized TQM manpower on a single policy, then transfer the specialized TQM manpower to the next policy when the first policy reaches the predetermined implementation time limit (in terms of education and training). Suppose that each TQM policy has a different desirous education and training goal. When the desirous goals for all TQM policies are achieved, we say that the fundamental goal will be satisfied. Within the limitation of total implementation period of time for all policies, assume the desirous goals for all TQM policies cannot be achieved completely. Under this premise, the optimal implementation sequence for all TQM policies must be calculated to maximize the weighted achievement of the desirous goal. We call this optimization problem a TQM case of "centralized sequential decision-making problem (CSDMP)". The achievement of the desirous goal for each TQM policy is usually affected by the experience in prior implemented policies, which makes solving CSDMP quite difficult. As a result, this paper introduces the concepts of sequential effectiveness and path effectiveness. The structural properties are then studied to propose theoretical methods for solving CSDMP. Finally, a numerical example is proposed to demonstrate CSDMP′s usability.

A Weight on Boolean Algebras for Cryptography and Error Correcting Codes (암호학 및 오류 수정 코드를 위한 부울 대수 가중치 연구)

  • Yon, Yong-Ho;Kang, An-Na
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.5
    • /
    • pp.781-788
    • /
    • 2011
  • A sphere-packing problem is to find an arrangement of the spheres to fill as large area of the given space as possible, and covering problems are optimization problems which are dual problems to the packing problems. We generalize the concepts of the weight and the Hamming distance for a binary code to those of Boolean algebra. In this paper, we define a weight and a distance on a Boolean algebra and research some properties of the weight and the distance. Also, we prove the notions of the sphere-packing bound and the Gilbert-Varshamov bound on Boolean algebra.

Study on Multi-scale Unit Commitment Optimization in the Wind-Coal Intensive Power System

  • Ye, Xi;Qiao, Ying;Lu, Zongxiang;Min, Yong;Wang, Ningbo
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.6
    • /
    • pp.1596-1604
    • /
    • 2013
  • Coordinating operation between large-scale wind power and thermal units in multiple time scale is an important problem to keep power balance, especially for the power grids mainly made up of large coal-fired units. The paper proposes a novel operation mode of multi-scale unit commitment (abbr. UC) that includes mid-term UC and day-ahead UC, which can take full advantage of insufficient flexibility and improve wind power accommodation. First, we introduce the concepts of multi-scale UC and then illustrate the benefits of introducing mid-term UC to the wind-coal intensive grid. The paper then formulates the mid-term UC model, proposes operation performance indices and validates the optimal operation mode by simulation cases. Compared with day-ahead UC only, the multi-scale UC mode could reduce the total generation cost and improve the wind power net benefit by decreasing the coal-fired units' on/off operation. The simulation results also show that the maximum total generation benefit should be pursued rather than the wind power utilization rate in wind-coal intensive system.

Characterization and modeling of near-fault pulse-like strong ground motion via damage-based critical excitation method

  • Moustafa, Abbas;Takewaki, Izuru
    • Structural Engineering and Mechanics
    • /
    • v.34 no.6
    • /
    • pp.755-778
    • /
    • 2010
  • Near-fault ground motion with directivity or fling effects is significantly influenced by the rupture mechanism and substantially different from ordinary records. This class of ground motion has large amplitude and long period, exhibits unusual response spectra shapes, possesses high PGV/PGA and PGD/PGA ratios and is best characterized in the velocity and the displacement time-histories. Such ground motion is also characterized by its energy being contained in a single or very few pulses, thus capable of causing severe damage to the structures. This paper investigates the characteristics of near-fault pulse-like ground motions and their implications on the structural responses using new proposed measures, such as, the effective frequency range, the energy rate (in time and frequency domains) and the damage indices. The paper develops also simple mathematical expressions for modeling this class of ground motion and the associated structural responses, thus eliminating numerical integration of the equations of motion. An optimization technique is also developed by using energy concepts and damage indices for modeling this class of ground motion for inelastic structures at sites having limited earthquake data.