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A Weight on Boolean Algebras for Cryptography and Error
Correcting Codes
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Abstract

A sphere-packing problem is to find an arrangement of the spheres to fill as large area of the given space
as possible, and covering problems are optimization problems which are dual problems to the packing problems.
We generalize the concepts of the weight and the Hamming distance for a binary code to those of Boolean
algebra. In this paper, we define a weight and a distance on a Boolean algebra and research some properties
of the weight and the distance. Also, we prove the notions of the sphere-packing bound and the
Gilbert-Varshamov bound on Boolean algebra.
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[. INTRODUCTION

mization problems which are dual problems to the pack-

ing problems. Sphere-packing bounds are closely related

Coding theory has been studied for the effective use of
the data, such as data compression, error correction, cryp-
tography and network transmission, in computer science.

A typical sphere-packing problem is to find an ar-
rangement of the spheres to fill as large area of the giv-

en space as possible, and covering problems are opti-

to error-correcting code.

In coding theory, packing problems have investigated in
order to find maximal codes with given minimum distance
[1]-[3], and covering problems were examined in order to
find codes with given covering radius. It is the aim to de-

termine the minimal cardinality of such a covering code
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[4]-[7]. Improved sphere-packing bounds for binary code
were introduced in [8],[9], and a improving
Gilbert-Varshamov bound for g-ary codes was studied in
[10]. The general theory of code can be found in [11]-[13].

In section 2, we define a weight function on Boolean
algebras and research basic properties of it, and in sec-
tion3, we define a distance on Boolean algebras using
the weight function and research basic properties of the
distance, and prove the similar notions with the
sphere-packing bound and the Gilbert-Varshamov bound

in coding theory.

II. A WEIGHT FUNCTION ON BOOLEAN
ALGEBRAS

Let (P; <) be a poset and let =, y € P. We say y
covers x, written by x —< gy or y>— x, if x < y and
r < z <y implies z = x.

Let L be a lattice with the bottom element 0. Then
an element @ in L is called an atom if 0 —<a. If L
is a finite lattice, then for all x & L with x = 0, there
is an atom a such that 0 —<a < x.

A Boolean algebra is an algebraic structure (B3;
v, A,',0,1) such that

(B‘ V', A) is a distributive lattice,
(2) xV0=x and zA1=z for all z€ B,
B)zVva' =1ad Az’ =0 for all zE B.

Lemma 2.1. [14] Let B be a Boolean algebra and

x,y & B. Then
(1) 0'=1and 1'=0
) z”
Q) (@ ) =z'Ay and (zAy) =2 VY,
4) Ay =0 if and only if x < y,
(5) x < y if and only if 2" > y/'.

If B is a finite Boolean algebra, then 5 has atoms

and we will writt A to denote the set of all atoms

in B.
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Lemma 2.2. [14] Let B be a finite Boolean algebra.
Then for each x< B,
z=V{aEAzla < x}.

Lemma 2.3. [14] Let B be a finite Boolean algebra.
Then the map n: B — P(Ay) given by
nx)={a€ Agla < z} for each xE B

is an isomorphism with the inverse 1~ of 7 given
by 7771(5)2 V'S for each SE P(Ag), where
P(Ap) is the power set of Ap,

Further discussion of the fundamentals of Boolean al-
gebra can be found in [14],[15].
Let B be a finite Boolean algebra and z & B. We
will write A (z) to denote the subset
{aE Agla<uw }
of B. Then from Lemma 2.2 and 2.3, we have
Al)=nz)= | zNAp
z=n '(n()=VvA)
for all z €B, where | z={2€B|z2 < z}.

Lemma 24. Let B be a finite Boolean algebra.
Then for any x,y<=B, = <y if and only if
Alx) € A(y). In particular, = =y if and only if
Az)=A(y).

Proof. Let < y. Then | & < | v, and hence
Az)= lzNAp < iymAB:A(?/)-
Conversely, if A(z) € A(y), then z =V A(z)
< VA(y)=wy. It is clear that = =y if and only
it Alz) = A(y). 0

Lemma 2.5. Let B be a finite Boolean algebra and
x,y= B. Then the following are equivalent :

(1) A(z)NAly) = ¢;

@ dzn |y=1{0}

(3) x Ay=0.

Proof. ((1)=(2)) Let A(x)NA(y)=¢. It is
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clear that 0 | « N | y. Suppose that there exists
2€ | x N | y such that z == 0. Then there is an
atom a« such that 0 —<a< 2, that s a €&
A(z) # ¢. Since z < xand z < y, we have
A(z) € A(x) and A(z) < A(y)
from Lemma 2.4, and hence
p=Alz) c Alz)N Aly).

It is a contradiction. Hence | z N | y = {0}.
(2=03) Let{xn | y={0}. Since Ay <
<z and x Ay <y, we have

zAyE |xzN |y=10}.
Hence z Ay = 0.
(3)=(1)) Let 2 Ay = 0. Suppose that A (z)N
A(y) = ¢. Then there is an atom z such that
z<zxzand z <y, that is, 0 < z < x Ay, and it
is a contradiction. Hence A (z)N A(y)= ¢. ]

Definition 2.6. Let B be a finite Boolean algebra.
Then for any z, y& B, = and y are said to be
disjoint if x Ay = 0.

Definition 2.7. Let B be a finite boolean algebra.
Then the weight w on B is a map w: B — Z
given by

w(z)=14(z)l
for each # & B, where |X| is the cardinality of a
set X.

Lemma 2.8. Let B be a finite boolean algebra. Then
(1) w(z) =0 for all zEB,
in particular, w(z)=0 < =0,
() wla)=1 forall a € Ap,
Bzr=<y=w)<wly) forany x,y<EB.

Proof. 1t is clear from the definition of weight. [

Proposition 2.9. Let 5 be a finite Boolean algebra
and x,y< B. Then

() Alzvy)=Az)N Aly)

2) AlzAy)=Alz)N Aly),
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4 Alx)NA@E")=¢

Proof. (1) Let x,yEB. Since x < xVy an y
< xVy, we have
Alx)< A(xVvy) and A(y) € A(zVy).
by Lemma 2.4, Hence A(z)U A(y) € A(xVy).
Conversely, let a& A(xVy). Then @ is an atom
with a < xVy, and
0<aNnz<aad 0 <aAy<a.
If aAz=0 and aNy=0, then
a=al (x\/y)z (a/\x)\/(a/\y)ZO.
It is a contradiction. This implies that
aNx#0 or aNy# 0.
Since @ is an atom, aAx =a or aAy = a, that
is, a <z or a<vy. Hence a= A(z)U A(y).
(2) Let =, y= B. Then it is clear that A (z Ay)
A(x)NAy) since Ay <z and zAy < 3.
Conversely, suppose that a < A(x)N A(y). Then
a<x and a <y. It follows that a < xAy.
Hence a€ A (xz Ay).
(3) Let x & B. Then it is clear that
Alz)UA(") < Agp
To prove A, © A(x)U A(z"), suppose that a =
Ap and a & A(x). Then aAx < a. Since a is
an atom, a\z” =aAx=0. From Lemma 2.1(4),
a <z, that is, a= A(z"). Hence
Apc Alz)UA(x).
(4) Let € B. Then Az’ = 0. Hence
Al)NA(')=¢
from Lemma 2.5. ]

Proposition 2.10. Let B be a finite Boolean algebra,
w the weight on B and x,y<E B. Then
M wzVvy)=wl)+wly)—wlzAy),
(2) if © and y are disjoint in B, then
w(zVy)=w(r)+wly),
B) wxAy)=w)—wlxzAy).

Proof. (1) and (2) are trivial from Definition 2.7 and



784

Proposition 2.9.
(3) Let x, y= B. Then
=z yVvy)= @Ay VvizAy),
(:E/\y)/\ (x/\y/) =z (y/\y')zx/\OZO.

From (2) of this proposition, we have

w(z)=wlzAy)V (@Ay"))
Zw(x/\y)-i—w(x/\y/).
Hence w(z Ay') =w(z)—w(zAy). 0

Theorem 2.11. Let B be a finite Boolean algebra
and x,y<= B. Then

() if a€EAg and a & A(x) then v —~xVa,
(2) if x =<y, then there is a unique a = A such

that a Z A(x) and y=xV a.

Proof. (1) Let a= A, and a & A(x). Then
Al@Vva)=A@)UA(a)= A(z)U{a}
= A(x)
and xVa#=ax by Lemma 2.4, hence = < zVa.
If x < z<axVa, then

Alx)cA(z)c A(xVva)=A(x)U{a}

by Lemma 2.4. Since A(z) = A(zxVa),
Alx)=A(z).
Hence x = z. It follows that x —< x V a.

(2) Let z —<y. Then 0=z Az’ < yAz'. We
will show that y Az’ is an atom. If yAx" =0,
then we have

yZyA(x'\/x)Z(y/\ar')\/wZOVx:m
and it is impossible, hence y/\x' #= 0, that is,
0<yAz'. Suppose that 0 < z<yAz  for
some z& B. Then

r<zVzx < (y/\ac')\/xzy/\ (sc/\/m)
=yAl=y.
Since <y, zVe=x or zVz=y. If zVa
=y, then we have
yAx'Z(y/\:v')/\yZ(y/\:U')/\(z\/Jz)
Zz\/((y/\x/)Ax) =zVvV0=z.
It is impossible, hence zVaz =z. Since z < y Az’
<z ad z2<zVr=z, z<zxzAz =0. It

follows that z = 0. Hence y Az’ is an atom with
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yNnz <.

Set a=yAx’. Then a € A(x) since aN\x =
(yAz' )Ax=0 and 2Va=zV (yAz')=y.
To show that this atom a is unique, suppose that
a,bEAp and zVa=y=2xVb. Then
anz' =@Va) Az =(@Vb)Az =bAx.
If aAz'=0, then we have

yZa\/zZ(a/\:ﬁ)\/mZO\/x:L
and it is impossible, hence aAx’ = 0. In the
similar way, bAx" # 0. Since a and b are atoms
and since a Az’ < a and bAz" < b,
aNz'=a and DA ' =b.
This imply that a=aAz' =bAz =b. U]

In Theorem 2.11(2), if = —<y, then the unique
atom a satisfying y=axVa is yAz', and
a=yAz' €A().

Corollary 2.12. Let B be a finite Boolean algebra
and w the weight on B. Then for any x,y<E B,
r—y = wly)=w)+1.

Proof. From Theorem 2.11(2), there is a & A such
that aZ A(x) and y=2xVa, it follows that
Aly)=A(x)UA(a)=A(x)U {a}, hence we

have w(y) = w(x)+ 1. O

II. A DISTANCE ON BOOLEAN ALGEBRA

Lemma 3.1. Let B be a boolean algebra. If we
define a map d: BX B — R by
dz,y)=w(z Ay )V (' Ay))
for every x, y <& B, then d satisfies the following :
(1) d(z,y) = 0,

d(x,y) =0 if and only if x =1y,
d(z,y) = d(y,z),

(z,y) < d(z,2)+d(z,y).

dlx,y

Proof. The proof of (1) and (3) is trivia. We need
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prove (2) and (4).

(2) It is trivial that « =y implies d(z,y) =0,
because Ay =z ' Ay=ax Az =0. Conversely,
suppose that d(z,3) = 0. Then

0= d(a:,y):w(:n/\y')-i-w(x'/\y)
since Ay and x’ Ay are disjoint. Hence we have
w(zAy')=0 and w(z'Ay)=0.
This implies that x Ay’ =0 and 2’ Ay=0 from
Lemma 2.8(1), and <y and y <z from
Lemma 2.1(4). It follows that x = y.
(4) Let z,y,2€B. Since zAy <y and zAyY
< x, we have
:c/\y/ = (x/\y') 1
=@Ay )N (zVvz)
[(Ay )Nz @Ay )N 2]
< (y'/\z)\/ (x/\z').
In the similar way, we have
x'/\y < (x'/\z)\/ (y/\z').
This implies that
@Ay )V (@ Ay)
< (z/\z') Vv (1:'/\2) Vv (y/\z/)\/ (y//\z)
Hence we have
d(z,y) =w((z Ay )V (@ Ay))
< w((:c/\z')\/ (a:'Az)
V(YA )V (Y Az))
w((x/\z')\/ (:L"/\z))
+w((yAn")V (Y Az))
=d(z,z)+d(zy)
by Lemma 2.8(3) and Proposition 2.10. U

AN
A\

IA

From Lemma 3.1, the map d is a metric on A, and
d has the following property :
d(x,y):w(x/\y')-l—w(x’Ay)

since (zAy )A (2" Ay)=(zAz")A(yAy') =0.
Let B be a finite Boolean algebra. If [A4,|=n,
then B contains 2" elements, and if Z, is the set
of all elements with weight & for each k=0, 1, 2,
o n, that is, L, = {z€ Blw(z) =k}, then the
set 0= {L,lk=0,1,2,..,n} is a partition of B.
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Proposition 3.2. Let B be a finite Boolean algebra.
Then for all =, y<= B,
d(z,y)=w(z)+wly)—2wlzAy).

Proof. 1t is clear from Proposition 2.10(3). [

Corollary 3.3. Let B be a finite Boolean algebra
with | Azl =n, and let tEL, ad yE L, with
0 < my my < n. Then
(1) if my +my is even, then d(x,y) is even,
) if my +my is odd, then d(x,y) is odd,
() if z,y=L,, for any non-negative integer m
with m < n, then d(z,y) is even.

Proof. 1t follows immediately from the preceding
Pro-position. []

Let B be a finite Boolean algebra. If § is a
non-negative integer and x & B, then B(x:6) is
the set of all elements that has the distance & from
z, that is, B(x;6) ={yEBld(x,y)=15}.

The sphere centered at x with radius § is defined
by S(z;6)={ysBld(x,y) < 5}. Form the

[
definition of sphere, we have S(z;6) = B(x;i).
i=0

Proposition 3.4. Let B be a finite Boolean algebra
and § a positive integer and x € B. then B(x;6)
is the set of all elements of the form :

Y1V
where y,,y, €B such that y, <z, y, <2’

and w(yl)—w(yg)zw(x)—é.

Proof. Suppose that iy € B(x;6). Then
y=yA@@va)=yrz)Vvyrz).
Let y, =yAx and y, =yAx'. Then y, < x
and y, < ', and we have
S=d(z,y)=w(z)+wly)—2wlxzAy)
=w(r)+wly)— 2wy, ).
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w(y;) +wly,),
§=w(z)+wly)+wly)—2wly).
This implies that w(z)— 6= w(y,) — w(y,).

by Proposition 3.2. Since w(y) =

Conversely, suppose that y; y,& B such that
y <z, yy <2 and w(y)—wly,)=wlz)—4.
Then we have

e AN V) =2 Ay Ay,
=z Ay ANy
=@ V) Ay’

=x N yl’,
and since y; A2’ =0 by Lemma 2.1(4),
(V) Az =y Az")V (ynz')
=0V Y=y
Hence from Proposition 2.10(3), we have

d(?h\/ym CL‘)

w((y, Vy)Az')+w((y, V y,) Ax)

=w(y,) +wlzAy’)
=w(yy) +wx)—wlzAy)
=w(y,) +wlz)—wly)
=w(z)— (wly,) —wly,))
=w(z)—w(x)+s
=9,

and it follows that 3,V y, & B(x;4). OJ

Proposition 3.5. Let B be a finite Boolean algebra
and & a positive integer. Then for any x< B, the
following are equivalent :
(1) y € Blx39),
(2) there are & atoms ay,ay, ...,as such that
Y= (z A (a "N Aa ’))v (amﬂv \/a(;)
where ay,...a,EA(x) and a, ., ...a5E

A(z") for some m € 1{0,1,2,...,6}.

Proof.  (1)=(2)) Let y<B(x;8). Then from
Proposition 3.4, there are y; y,& L5 such that
Yy=y1Vyy and y; =, y, < z'and

w(:‘/l)_w(yz):w(w)—é.
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From Lemma 2.2 and 2.4,
yl :Cl\/ cee \/cl

with A(y,) {cl, b€ Alz), and
—d,V - Vd,
with A(y2)={ }CA I {al,---,am}z
z) —{cpoe), then Az {al, s €5 G}

and m+1=w(z).
Let a =a;' A -+ Aa,,
Va, Ve Vo

". Then we have
r=aqV - \/clzo/\/yl.
Since ¢; and a; are atoms, C»/\(JL‘”: c¢;Na; =0,

and by Lemma 2.1(4), ¢; < a for each 1 =1, 2,

w0l and j=1,2,---,m. This implies that
Yy =c Vo Ve < aj/
for each 7=1,2,---, m, and hence
Y = a /\--~/\am':a.

It follows that
:UAozZ(oz'\/yl)/\ozzyl/\azyl,
hence y =1y, Vy, = (xAa)Vy, Since wly,)
—w(y,) =w(z)—46, that is, I—r=1+m—¢
and m—+r=2J.
Set d; =a
Yo = QppqqV o
y=(xA(a/ A -

with a,,....,a,, €EA(z) and a, . ..,a; € A(z").

for each 4=1,2,---,r. Then
V as and

m + i

Aa’m ))\/ (am+1v \/(l5)

((2)=(1)) Suppose that there are & atoms a;, as,

-, as such that

Y= (xA (al/A Aam'))\/ (amﬂ\/ \/aé)
with ay,...,a,€A(x) and a, ..., 0; EA(z")
for some m €1{0,1,2,...,

and ﬁ m+1

§b. Let a=a,V - Va,

- Va,. Then

y=(@Aa" )V},

where a <z, <2, wla)=m, w(B)=6—m.

Since (zAa)AB< o' A(zAz")=0, we have
wly)=wleNa')+w(s)

=w(z)—wAa)+w(p)
=w(z)—wla)+w(s)
=w(z)+d5—2m,

and since A3 < xAz =0, that is, z A B3=0,



w(x/\y)z

(¢}

From Proposition 3.2, w
d(z,y)
=w(x)
=w(x)
=90

This implies that y € B(x;6). [

w(y)—Qw(ac/\y)

+
+(w(z)+d6—2m)—2w(z)—m)

From the Proposition 3.4, the elements in B(z;d)
is characterized by ¢ atoms in B.

Corollary 3.6. Let B be a finite Boolean algebra

with |A gzl =mn, and & a positive integer. Then for

every x € DB,
1) 1B = (1)
s
@) 1S(a;6)l = 22]()

Proof. (1) It follows immediately from Proposition
3.5, that is, we can make an element in B(x;6) by
joining & elements of A .

(2) 1t follows immediately from

5= ) Bloik). 0

k=0

Let B be a finite Boolean algebra and C' < B.
We define the minimum distance of C' as following:

d, (C)=min{d(z,y) | z,y= Cand z = y}
and denote g for the set of all subsets of B with

minimum distance ¢, that is,
={Ccc Bld,(C)=4}.

Theorem 3.7. Let B be a finite Boolean algebra
with |A gzl =mn and § a positive integer. Then

1B

bl

|C| <
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for any C'E g, where e = { (S_TlJ .

Proof. Let CE=p; and x, y= C with = # y. If
2€8(z;5e) N S(y;e), then we have
d(x,y) < d(x,z)+d(z,y) <ete<di—1,

and it is impossible because the minimum distance of
C is 6. Hence S(xz;e)N S(y;e)= . It follows
that

Z 1S(z;e)l =11 S(z;e)l < IBI.

zeC xe C

since U S(z;e) < B. This implies that
zeC

|C|S(x;e)| < |B.
| B|

P

Hence |C| <

from Corollary 3.6(2). [

Theorem 3.7 gives the optimal number of
codewords (elements in (') for error-correcting. In
general, C' is called a perfect e-error-correcting
code in coding theory if C'satisfies the equality in
Theorem 3.7.

Theorem 3.8. Let B be a finite Boolean algebra
|Azl=n and & a positive integer. If C'E oy such
that |C| = maX{|D| | D E@;}, then

o= 1B

Pl

Proof. We need show that {S(z;6—1)|2z€ C'}
cover B. Suppose that zEB and z& S(x;0—1)
for all z& C. Then d(z,z) = § for all z= C. It
follows that d(z,y) > & for all z,y € CU {2},
hence d,, (C'U {z}) = d,, (C)= 6. This is a con-
tradiction to maximality of |C] in ;. So we have

1Bl < [ U Sz;0—1)|

ze C

< Y 18(z;6—1)]

reC

=,
:'C'Zo(k)'
| B

boff

Hence we have < |C]. ]
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IV. CONCLUSION

We defined a weight and a distance on Boolean alge-
bras as a generalization of binary code, and represented
basic properties of them. Also using the concepts of the
weight and the distance, we proved the sphere-packing
bound and the sphere-covering bound of Boolean
algebra. We are sure that these concepts and notions can
be used to the different boolean algebras with the binary
codes, especially cryptographic algorithms, error correc-
tion codes, and network transmission for enhancing their
quality and effectiveness.
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