• Title/Summary/Keyword: Concept lattice

Search Result 103, Processing Time 0.028 seconds

A Study on Traditional Korean Furniture, PyeongSang II - Developing Modularized and Multi-useful Bed adopting PyeongSang - (한국 전통목가구 평상(平床) 연구 2 - 평상을 적용한 모듈화 다용도 침대 개발 -)

  • Kim, Min Keung;Moon, Sun Ok
    • Journal of the Korea Furniture Society
    • /
    • v.28 no.3
    • /
    • pp.145-155
    • /
    • 2017
  • This study explores developing a piece of modularized and multi-useful bed adapting PyeongSang followed by the last issue, 'a study on traditional Korean furniture, PyeongSang I' for the understanding of the furniture from theory and history. Adopted From the joints and ornament, the modularized elements were designed and developed in order to compose the head board, the side board, the foot board, and the seat bottom. The joints are sambang miter, samae miter, dado, and mortise and tenon, which are strong in holding the bed. And the ornament is lattice patterns like geokjamun and manjamun, elephant eyes patterns like ansangmun from the traditional furniture. Using the elements, the bed is composed with six modules which make people free and easy to move and transform them. Hence, the bed is multi-useful by using the double, the twin the single, and various sofas by the way to display them such as two, three, four, five, and six modules. And the bed was made of bright zelkova tree and dark heat treated ash expressing contrast of black and white, the design concept modern and easy to make many people access to them.

Core analysis of accident tolerant fuel cladding for SMART reactor under normal operation and rod ejection accident using DRAGON and PARCS

  • Pourrostam, A.;Talebi, S.;Safarzadeh, O.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.3
    • /
    • pp.741-751
    • /
    • 2021
  • There has been a deep interest in trying to find better-performing fuel clad motivated by the desire to decrease the likelihood of the reactor barrier failure like what happened in Fukushima in recent years. In this study, the effect of move towards accident tolerant fuel (ATF) cladding as the most attracting concept for improving reactor safety is investigated for SMART modular reactor. These reactors have less production cost, short construction time, better safety and higher power density. The SiC and FeCrAl materials are considered as the most potential candidate for ATF cladding, and the results are compared with Zircaloy cladding material from reactor physics point of view. In this paper, the calculations are performed by generating PMAX library by DRAGON lattice physics code to be used for further reactor core analysis by PARCS code. The differential and integral worth of control and safety rods, reactivity coefficient, power and temperature distributions, and boric acid concentration during the cycle are analyzed and compared from the conventional fuel cladding. The rod ejection accident (REA) is also performed to study how the power changed in response to presence of the ATF cladding in the reactor core. The key quantitative finding can be summarized as: 20 ℃ (3%) decrease in average fuel temperature, 33 pcm (3%) increase in integral rod worth and cycle length, 1.26 pcm/℃ (50%) and 1.05 pcm/℃ (16%) increase in reactivity coefficient of fuel and moderator, respectively.

A Reconstruction of Area Unit of Elementary Mathematics Textbook Based on Freudenthal's Mathematisation Theory (Freudenthal의 수학화 이론에 근거한 제 7차 초등수학 교과서 5-가 단계 넓이 단원의 재구성)

  • You, Mi-Hyun;Kang, Heung-Kyu
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.13 no.1
    • /
    • pp.115-140
    • /
    • 2009
  • Freudenthal has advocated the mathematisation theory. Mathematisation is an activity which endow the reality with order, through organizing phenomena. According to mathematisation theory, the departure of children's learning of mathematics is not ready-made formal mathematics, but reality which contains mathematical germination. In the first place, children mathematise reality through informal method, secondly this resulting reality is mathematised by new tool. Through survey, it turns out that area unit of Korea's seventh elementary mathematics textbook is not correspond to mathematisation theory. In that textbook, the area formular is hastily presented without sufficient real context, and the relational understanding of area concept is overwhelmed by the practice of the area formular. In this thesis, first of all, I will reconstruct area unit of seventh elementary textbook according to Freudenthal's mathematisation theory. Next, I will perform teaching experiment which is ruled by new lesson design. Lastly, I analysed the effects of teaching experiment. Through this study, I obtained the following results and suggestions. First, the mathematisation was effective on the understanding of area concept. Secondly, in both experimental and comparative class, rich-insight children more successfully achieved than poor-insight ones in the task which asked testee comparison of area from a view of number of unit square. This result show the importance of insight in mathematics education. Thirdly, in the task which asked testee computing area of figures given on lattice, experimental class handled more diverse informal strategy than comparative class. Fourthly, both experimental and comparative class showed low achievement in the task which asked testee computing area of figures by the use of Cavalieri's principle. Fifthly, Experiment class successfully achieved in the area computing task which resulting value was fraction or decimal fraction. Presently, Korea's seventh elementary mathematics textbook is excluding the area computing task which resulting value is fraction or decimal fraction. By the aid of this research, I suggest that we might progressively consider the introduction that case. Sixthly, both experimental and comparative class easily understood the relation between area and perimeter of plane figures. This result show that area and perimeter concept are integratively lessoned.

  • PDF

INTERGRANULAR CORROSION-RESISTANT STAINLESS STEEL BY GRAIN BOUNDARY ENGINEERING

  • Hiroyuki Kokawa;Masayuki Shimada;Wang, Zhan-Jie;Yutaka S. Sato
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.250-254
    • /
    • 2002
  • Intergranular corrosion of austenitic stainless steels is a conventional and momentous problem during welding and high temperature use. One of the major reasons for such intergranular corrosion is so-called sensitization, i.e., chromium depletion due to chromium carbide precipitation at grain boundaries. Conventional methods for preventing sensitization of austenitic stainless steels include reduction of carbon content in the material, stabilization of carbon atoms as non-chromium carbides by the addition of titanium, niobium or zirconium, local solution-heat-treatment by laser beam, etc. These methods, however, are not without drawbacks. Recent grain boundary structure studies have demonstrated that grain boundary phenomena strongly depend on the crystallographic nature and atomic structure of the grain boundary, and that grain boundaries with coincidence site lattices are immune to intergranular corrosion. The concept of "grain boundary design and control", which involves a desirable grain boundary character distribution, has been developed as grain boundary engineering. The feasibility of grain boundary engineering has been demonstrated mainly by thermomechanical treatments. In the present study, a thermomechanical treatment was tried to improve the resistance to the sensitization by grain boundary engineering. A type 304 austenitic stainless steel was pre-strained and heat-treated, and then sensitized, varying the parameters (pre-strain, temperature, time, etc.) during the thermomechanical treatment. The grain boundary character distribution was examined by orientation imaging microscopy. The intergranular corrosion resistance was evaluated by electrochemical potentiokinetic reactivation and ferric sulfate-sulfuric acid tests. The sensitivity to intergranular corrosion was reduced by the thermomechanical treatment and indicated a minimum at a small roll-reduction. The frequency of coincidence-site-lattice boundaries indicated a maximum at a small strain. The ferric sulfate-sulfuric acid test showed much smaller corrosion rate in the thermomechanically-treated specimen than in the base material. An excellent intergranular corrosion resistance was obtained by a small strain annealing at a relatively low temperature for long time. The optimum parameters created a uniform distribution of a high frequency of coincidence site lattice boundaries in the specimen where corrosive random boundaries were isolated. The results suggest that the thermomechanical treatment can introduce low energy segments in the grain boundary network by annealing twins and can arrest the percolation of intergranular corrosion from the surface.

  • PDF

Encounter of Lattice-type coding with Wiener's MMSE and Shannon's Information-Theoretic Capacity Limits in Quantity and Quality of Signal Transmission (신호 전송의 양과 질에서 위너의 MMSE와 샤논의 정보 이론적 정보량 극한 과 격자 코드 와의 만남)

  • Park, Daechul;Lee, Moon Ho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.8
    • /
    • pp.83-93
    • /
    • 2013
  • By comparing Wiener's MMSE on stochastic signal transmission with Shannon's mutual information first proved by C.E. Shannon in terms of information theory, connections between two approaches were investigated. What Wiener wanted to see in signal transmission in noisy channel is to try to capture fundamental limits for signal quality in signal estimation. On the other hands, Shannon was interested in finding fundamental limits of signal quantity that maximize the uncertainty in mutual information using the entropy concept in noisy channel. First concern of this paper is to show that in deriving limits of Shannon's point to point fundamental channel capacity, Shannon's mutual information obtained by exploiting MMSE combiner and Wiener filter's MMSE are interelated by integro-differential equantion. Then, At the meeting point of Wiener's MMSE and Shannon's mutual information the upper bound of spectral efficiency and the lower bound of energy efficiency were computed. Choosing a proper lattice-type code of a mod-${\Lambda}$AWGN channel model and MMSE estimation of ${\alpha}$ confirmed to lead to the fundamental Shannon capacity limits.

Static analysis of a radially retractable hybrid grid shell in the closed position

  • Cai, Jianguo;Jiang, Chao;Deng, Xiaowei;Feng, Jian;Xu, Yixiang
    • Steel and Composite Structures
    • /
    • v.18 no.6
    • /
    • pp.1391-1404
    • /
    • 2015
  • A radially retractable roof structure based on the concept of the hybrid grid shell is proposed in this paper. The single-layer steel trusses of the radially foldable bar structure are diagonally stiffened by cables, which leads to a single-layer lattice shell with triangular mesh. Then comparison between the static behavior between the retractable hybrid grid shell and the corresponding foldable bar shell with quadrangular mesh is discussed. Moreover, the effects of different structural parameters, such as the rise-to-span ratio, the bar cross section area and the pre-stress of the cables, on the structural behaviors are investigated. The results show that prestressed cables can strengthen the foldable bar shell with quadrangular mesh. Higher structural stiffness is anticipated by introducing cables into the hybrid system. When the rise-span ratio is equal to 0.2, where the joint displacement reaches the minimal value, the structure shape of the hyrbid grid shell approaches the reasonable arch axis. The increase of the section of steel bars contributes a lot to the integrity stiffness of the structure. Increasing cable sections would enhance the structure stiffness, but it contributes little to axial forces in structural members. And the level of cable prestress has slight influence on the joint displacements and member forces.

Abstraction Method for Analysis of Mobility and Interaction in Process Algebra Using Behavioral Ontology (프로세스 대수에서 이동성과 상호작용을 분석하기 위한 행위 온톨로지를 이용한 추상화 방법)

  • Woo, Su-Jeong;On, Jin-Ho;Lee, Moon-Kun
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.9
    • /
    • pp.63-75
    • /
    • 2011
  • A number of process algebras have been proposed to develop distributed mobile real-time systems: pi-Calculus, Mobile Ambients Calculus, Bigraph, etc. However, as the systems get large and complex, the algebras become less suitable for understanding the interactions and mobility of the processes of the systems due to the size and complexity. Therefore it is necessary to handle the size and complexity for systematic understanding of the systems. This paper handles the size and complexity with a method of abstraction on sequences of interactions and movements of processes in the systems, which can be further organized in the form of hierarchically structured lattices, namely, Prism. The theoretical principle of the abstraction is based on a new concept of Behavior Ontology, which is extended from Active ontology. Prism allows the systems to be analyzed in the perspective of the lattices in Prism, which are characterized by the hierarchically organized behavioral properties of the developing systems, for systematic understanding the systems. In this way, the complexity of the interactions and the movements can be handled systematically in the semantically and hierarchically organized structure of the behavior.

A Study on the Construction and Deconstruction of the 'Grid' : The Historical Context and Interpretation ('그리드'(Grid)의 형성과 해체 -서양회화의 사적맥락과 그 해석을 중심으로 -)

  • Kim Jai-Kwan
    • Journal of Science of Art and Design
    • /
    • v.1
    • /
    • pp.125-164
    • /
    • 1999
  • The Grid, a lattice structure adapted in paintings, is one of thesimplest plastic structures based on the intersection of horizontal and perpendicular lines. Though mankind has, from the pre-history to the present day, put it to good use in everyday life as a traditional practice or a magical, esoteric, religious emblem in the case of the teciform of primitve art, it was in the paintings of Piet Mondrian that the Grid showed its modern, artistic transformation. As we suggest in the title, before I state the Grid as a plastic construction of modern painting, this dissertation inquires the Grid structure that extends over paintings through the ages as a painterly conept, especially focused on their formation and deconstruction. To begin with, my dissertation investigates, as a historical background, a general idea of the geometrical structure and phases of its transition in art, prior to dealing with the Grids as plastic strures in modern painting. the core of my study on formal Grids is permeated through the third chapter. The first chapter concentrates on, firstly, difining the notion of the Grid and geometrical structure, secondly, searching for a historical backgrounb with whict the so- called modern Grid-paintings come in, inquiring into the formation of the illusion-Grid as aresult of discovering the linear perpective and the situation of the conflict and reconciliaton between reality and illusion. Based on these considerations, the second cecond chapter will examine the various sitations of formation and adaptation of the paintery Grids in the Literalism-Grid, as we have already seen in the chapter one. And the cardinal third chapter devotes itself to the process of the formation of the so-called Object-Grid and Literal-Grid in the Literalism or Minimalism as its logical extension of the Painterly Grid. With it we can get to an interpretation and understanding of the meaning and qualites of Grid dwelt in Modernism thst transformed the structure of Painterly Grid originally as a plane concept to the third dimentionl structure. And then, the fourth chapter, we try to draw a new meaning andre-interpretation of the Formal-Grid as a representatuinnal structure appeared in the post-modernist paintings, going with its deconstructional situation. Therefore, we can, in our study on Grids, see the various points of view in the interpretation of them as illusion-structure, as plane-structure, and as cubic-structure; its concept differs form times, oscillating between its formation and deconstruction. The Grid, as we have seen in my dissertation, contains various problems and significations in art that deserve to investigate throughly, including some important plastic problem such as space and plane, and, in the case of do-grid, time. We may expect new concepts of it that will have difference meanings. 1 hope my study makes some contributions to understanding the coordination of the abstruse modern and contemporary art.

  • PDF

Design and Implementation of a Question Management System based on a Concept Lattice (개념 망 구조를 기반으로 한 문항 관리 시스템의 설계 및 구현)

  • Kim, Mi-Hye
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.11
    • /
    • pp.412-425
    • /
    • 2008
  • One of the important elements for improving academic achievement of learners in education through e-learning is to support learners to study by finding questions they want with providing various evaluation questions. However, most of question retrieval systems usually depend on keyword search based on only a syntactical analysis and/or a hierarchical browsing system classified by the topics of subjects. In such a system it is not easy to find integrative questions associated with each other. In order to improve this problem, in this paper we proposed a question management and retrieval system which allows users to easily manage questions and also to effectively find questions for study on the Web. Then, we implemented a system that gives to access questions for the domain of C language programming. The system makes it possible to easily search questions related to not only a single theme but also questions integrated by interrelationship between topics and questions. This is done by supporting to be able to retrieve questions according to conceptual interrelationships between questions from user query. Consequently, it is expected that the proposed system will provide learners to understand the basic theories and the concepts of the subjects as well as to improve the ability of comprehensive knowledge utilization and problem-solving.

Grain Boundary Character Changes and IGA/PWSCC Behavior of Alloy 600 Material by Thermomechanical Treatment (가공열처리에 의한 Alloy 600 재료의 결정립계특성 변화와 입계부식 및 1차측 응력부식균열 거동)

  • Kim, J.;Han, J.H.;Lee, D.H.;Kim, Y.S.;Roh, H.S.;Kim, G.H.;Kim, J.S.
    • Korean Journal of Materials Research
    • /
    • v.9 no.9
    • /
    • pp.919-925
    • /
    • 1999
  • Grain boundary characteristics and corrosion behavior of Alloy 600 material were investigated using the concept of grain boundary control by thermomechanical treatment(TMT). The grain boundary character distribution (GBCD) was analyzed by electron backscattered diffraction pattern. The effects of GBeD variation on intergranular at tack(JGA) and primary water stress corrosion cracking(PWSeC) were also evaluated. Changes in the fraction of coinci dence site lattice(CSL) boundaries in each cycle of TMT process were not distinguishable, but the total eSL boundary frequencies for TMT specimens increased about 10% compared with those of the commercial Alloy 600 material. It was found from IGA tests that the resistance to IGA was improved by TMT process. However, it was found from PWSCC test that repeating of TMT cycles resulted in the gradual decrease of the time to failure and the maximum load due to change in grain boundary characteristics, while the average crack propagation rate of primary crack increased mainly due to suppression of secondary crack propagation. It is considered that these corrosion characteristics in TMT specimens is attributed to 'fine tuning of grain boundary' mechanism.

  • PDF