• Title/Summary/Keyword: Concentration of Solution

Search Result 6,773, Processing Time 0.037 seconds

EFFECTS OF Porphyromonas endodontalis LIPOPOLYSACCHARIDE ON MEMBRANE PERMEABILITY OF FIBROBLAST (Porphyromonas endodontalis의 Lipopolysaccharide가 섬유아세포의 세포막 투과성에 미치는 영향)

  • Kim, Jae-Hee;Kim, Min-Kyum;Yoon, Soo-Han
    • Restorative Dentistry and Endodontics
    • /
    • v.24 no.3
    • /
    • pp.437-446
    • /
    • 1999
  • Porphyromonas endodontalis(P. endodontalis) is one of the important causative bacteria of pulpal and periapical disease. P. endodontalis has lipopolysaccharide(LPS) and it plays a major role in stimulating the synthesis and release of cytokines from immune cells and prostaglandin $E_2$ from host cells. The purpose of this study is to prepare LPS from P. endodontalis and to evaluate the effect of LPS on membrane permeability of fibroblast. P. endodontalis ATCC 35406 was cultured in anaerobic condition, and LPS was extracted. LPS was confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Human periodontal ligament cell, colon fibroblast(CCD-18Co, KCLB 21459) and skin fibroblast(Detroit 551, KCLB 10110) were perfused with 0.01% P. endodontalis LPS solution, high concentration of $K^+$ solution and $Ca^{2+}$-free solution, $Ca^{2+}$ concentration ratio was measured by microfluorometry. 1. Intracellular $Ca^{2+}$ concentration was not changed in human periodontal fibroblast and skin fibroblast(Detroit 551) stimulated by P. endodontalis LPS. 2. Intracellular $Ca^{2+}$ concentration was increased in colon fibroblast(CCD-18Co) stimulated by P. endodontalis LPS. 3. Colon fibroblast(CCD-18Co) has voltage dependent $Ca^{2+}$ channel activated by high concentration of $K^+$ solution. 4. P. endodontalis LPS has no effect on the increase of intracellular $Ca^{2+}$ concentration during perfusion of $Ca^{2+}$-free solution.

  • PDF

Effect of Nutrient Solution Concentration on Growth, Yield and Fruit Quality of Fig Plant (Ficus carica L.) (배양액의 농도가 무화과(Ficus carica L.)의 생육, 수량 및 과실의 품질에 미치는 영향)

  • Jun Ha-Joon;Hwang Jin-Gyu;Son Mi-Ja;Kim Min;Kim Jeong-Pil
    • Journal of Bio-Environment Control
    • /
    • v.15 no.3
    • /
    • pp.264-269
    • /
    • 2006
  • This experiment has investigated the effect of growth, yield and fruit quality of fig plant by different concentration of nutrient solution. Nutrient solution for pig plant were three concentrations of the balanced nutrient formula development by Japanese Horticultural Experiment Station. Plant height, number of leaves, stem diameter and number of fruit per plant were the best at 1/2 concentration. However, leaf length and leaf width did not show any difference in other treatment. Fruit length, fruit diameter and soluble solids did not differ from the different concentration of nutrient solutions. However, the fruit weight of fig plant was heavier by hydroponics than by soil culture in 2nd experiment. Early stage growth of fig plant was better at low concentration of nutrient solution and yield was better at high concentration. The result of this experiment will be utilized in the new application for fig plant hydroponics.

Humic Acid Removal from Water by Iron-coated Sand: A Column Experiment

  • Kim, Hyon-Chong;Park, Seong-Jik;Lee, Chang-Gu;Han, Yong-Un;Park, Jeong-Ann;Kim, Song-Bae
    • Environmental Engineering Research
    • /
    • v.14 no.1
    • /
    • pp.41-47
    • /
    • 2009
  • Column experiments were performed in this study to investigate humic acid adhesion to iron oxide-coated sand (ICS) under different experimental conditions including influent humic acid concentration, flow rate, solution pH, and ionic strength/composition. Breakthrough curves of humic acid were obtained by monitoring effluents, and then column capacity for humic acid adsorption ($C_cap$), total adsorption percent (R), and mass of humic acid adsorbed per unit mass of filter media ($q_a$) were quantified from these curves. Results showed that humic acid adhesion was about seven times higher in ICS than in quartz sand at given experimental conditions. This indicates that humic acid removal can be enhanced through the surface charge modification of quartz sand with iron oxide coating. The adhesion of humic acid in ICS was influenced by influent humic acid concentration. $C_cap$ and $q_a$ increased while R decreased with increasing influent humic acid concentration in ICS column. However, the influence of flow rate was not eminent in our experimental conditions. The humic acid adhesion was enhanced with increasing salt concentration of solution. $C_cap$, $q_a$ and R increased in ICS column with increasing salt concentration. On the adhesion of humic acid, the impact of CaCl2 was greater than that of NaCl. Also, the humic acid adhesion to ICS decreased with increasing solution pH. $C_cap$, $q_a$ and R decreased with increasing solution pH. This study demonstrates that humic acid concentration, salt concentration/composition, and solution pH should be controlled carefully in order to improve the ICS column performance for humic acid removal from water.

POSITIVE SOLUTION AND GROUND STATE SOLUTION FOR A KIRCHHOFF TYPE EQUATION WITH CRITICAL GROWTH

  • Chen, Caixia;Qian, Aixia
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.4
    • /
    • pp.961-977
    • /
    • 2022
  • In this paper, we consider the following Kirchhoff type equation on the whole space $$\{-(a+b{\displaystyle\smashmargin{2}{\int\nolimits_{{\mathbb{R}}^3}}}\;{\mid}{\nabla}u{\mid}^2dx){\Delta}u=u^5+{\lambda}k(x)g(u),\;x{\in}{\mathbb{R}}^3,\\u{\in}{\mathcal{D}}^{1,2}({\mathbb{R}}^3),$$ where λ > 0 is a real number and k, g satisfy some conditions. We mainly investigate the existence of ground state solution via variational method and concentration-compactness principle.

Effect of Post-CMP Cleaning On Electrochemical Characteristics of Cu and Ti in Patterned Wafer

  • Noh, Kyung-Min;Kim, Eun-Kyung;Lee, Yong-Keun;Sung, Yun-Mo
    • Korean Journal of Materials Research
    • /
    • v.19 no.3
    • /
    • pp.174-178
    • /
    • 2009
  • The effects of post-CMP cleaning on the chemical and galvanic corrosion of copper (Cu) and titanium (Ti) were studied in patterned silicon (Si) wafers. First, variation of the corrosion rate was investigated as a function of the concentration of citric acid that was included in both the CMP slurry and the post-CMP solution. The open circuit potential (OCP) of Cu decreased as the citric acid concentration increased. In contrast with Cu, the OCP of titanium (Ti) increased as this concentration increased. The gap in the OCP between Cu and Ti increased as citric acid concentration increased, which increased the galvanic corrosion rate between Cu and Ti. The corrosion rates of Cu showed a linear relationship with the concentrations of citric acid. Second, the effect of Triton X-$100^{(R)}$, a nonionic surfactant, in a post-CMP solution on the electrochemical characteristics of the specimens was also investigated. The OCP of Cu decreased as the surfactant concentration increased. In contrast with Cu, the OCP of Ti increased greatly as this concentration increased. Given that Triton X-$100^{(R)}$ changes its micelle structure according to its concentration in the solution, the corrosion rate of each concentration was tested.

Effect of InGaZnO Solution Concentration on the Electrical Properties of Drop-Cast Oxide Thin-Film Transistors (InGaZnO 용액의 농도가 Drop-casting으로 제작된 산화물 박막 트랜지스터의 전기적 특성에 미치는 영향)

  • Noh, Eun-Kyung;Yu, Kyeong Min;Kim, Min-Hoi
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.5
    • /
    • pp.332-335
    • /
    • 2020
  • Drop casting, a solution process, is a simple low-cost fabrication technique that does not waste material. In this study, we elucidate the effect of the concentration of a InGaZnO solution on the electrical properties of drop-cast oxide thin-film transistors. The higher the concentration the larger the amount of remnant InGaZnO solutes, which yields a thicker thin film. Accordingly, the electrical properties were strongly dependent on the concentration. At a high concentration of 0.3 M (or higher), a large current flowed but did not lead to switching characteristics. At a concentration lower than 0.01 M, switching characteristics were observed, but the mobility was small. In addition to a high mobility, sufficient switching characteristics were obtained at a concentration of 0.1 M owing to the appropriate thickness of the semiconductor layer. This study provides a technical basis for the low-cost fabrication of switching devices capable of driving a sensor array.

The Effect of Draw Solution Concentration on Forward Osmosis Desalination Performance Using Blended Fertilizer as Draw Solution (유도용액으로 혼합비료를 사용한 정삼투식 해수담수화에서 담수화 성능에 대한 유도용액 농도의 영향)

  • Jeong, Namjo;Kim, Seung-Geon;Kim, Dong Kook;Lee, Ho-Won
    • Membrane Journal
    • /
    • v.23 no.5
    • /
    • pp.343-351
    • /
    • 2013
  • This study is to investigate the effects of the draw solution concentration on forward osmosis desalination performance using blended fertilizer as draw solution. As the concentration of blended fertilizer solution (draw solution) increased, the water permeate flux increased nearly linearly, but PR (performance ratio) was reduced. Using sea water and deionized water as the feed solution, respectively, at the blended fertilizer solution of 600 g/L $H_2O$, the PR obtained were 5.39 and 6.50, respectively. And as the concentration of blended fertilizer solution increased, the reverse solute flux for nitrogen (N), phosphorus (P), and potassium (K) increased nearly linearly, but specific reverse solute flux for them was reduced. The reverse solute flux and specific reverse solute flux became higher in the order of N > K > P.

Uptake and Phytotoxicity of TNT in Onion Plant

  • Kim, Jaisoo;Yavuz Corapcioglu;Malcolm C. Drew
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.102-106
    • /
    • 2003
  • The uptake of $^{14}C$-2, 4, 6-trinitrotoluene (TNT) in hydroponics was studied using onion plants. Of the total TNT mass (5 $\mu\textrm{M}$ concentration), 75% was in the roots, 4.4% in the leaves, and 21% in the external solution at 2 days, The percent distribution in roots was lower with higher concentration in the external solution, but in leaves it was comparable at all concentrations (5-500 $\mu\textrm{M}$). Root concentration factor (RCF) in hydroponics was more than 85 in constant hydroponic experiment (CHE) at 5 $\mu\textrm{M}$ and 150 in non-constant hydroponic experiment (NHE) at 5 $\mu\textrm{M}$. The maximum RCF values in the hydroponic system were greater with lower solution concentration. Transpiration stream concentration factor (TSCF) values in the present study (NHE only: 0.31-0.56) were relatively similar to the values with predicted values (0.43-0.78), increasing with higher external TNT concentration. For phytotoxicity tested in hydroponics and wet paper method, 500 $\mu\textrm{M}$ was toxic to onion plant, 50 $\mu\textrm{M}$ was non-toxic for plant growth but limited the transpiration rate, and 5 $\mu\textrm{M}$ was non-toxic as control.

  • PDF

Control of Galvanic Corrosion Between A516Gr.55 Steel and AA7075T6 Depending on NaCl Concentration and Solution Temperature

  • Hur, S.Y.;Jeon, J.M.;Kim, K.T.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.281-287
    • /
    • 2020
  • Chloride ion is one of the most important corrosive agents in atmospheric corrosion, especially in marine environments. It has high adsorption rate and increases the conductivity of electrolytes. Since chloride ions affect the protective properties and the surface composition of the corrosion product, they increase the corrosion rate. A low level of chloride ions leads to uniform corrosion, whereas a high level of chloride ions may induce localized corrosion. However, higher solution temperatures tend to increase the corrosion rate by enhancing the migration of oxygen in the solution. This work focused on the effect of NaCl concentration and temperature on galvanic corrosion between A516Gr.55 carbon steel and AA7075T6 aluminum alloys. When AA7075T6 aluminum alloy was galvanically coupled to A516Gr.55 carbon steel, AA7075T6 was severely corroded regardless of NaCl concentration and solution temperature, unlike the corrosion properties of single specimen. The combined effect of surface treatment involving carbon steel and aluminum alloy on corrosion behavior was also discussed.

Effects of Non-Absorbable Gases on the Absorption Process of Aqueous LiBr Solution Film in a Vertical Tube (II) (수직관내 리튬브로마이드 수용액막의 흡수과정에 대한 비흡수가스의 영향)

  • Kim, Byeong-Ju;Lee, Chan-U
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.4
    • /
    • pp.499-509
    • /
    • 1998
  • In the absorption process of water vapor in a liquid film, the composition of the gas phase, in which a non-absorbable gas is combined with the absorbate influences the transport characteristics remarkably. In the present study, the absorption processes of water vapor into aqueous solution of lithium bromide in the presence of non-absorbable gases were investigated analytically. The continuity, momentum, energy and diffusion equations for the solution film and gas phase were formulated in integral forms and solved numerically. It was found that the mass transfer resistance in gas phase increased with the concentration of non-absorbable gas. However the primary resistance to mass transfer was in the liquid phase. As the concentration of non-absorbable gas in the absorbate increased, the liquid-vapor interfacial temperature and concentration of absorbate in solution decreased, which resulted in the reduction of absorption rate. The reduction of mass transfer rate was found to be significant for the addition of a small amount of non-absorbable gas to the pure vapor, especially at the outlet of an absorber where non-absorbable gases accumulated. At higher non-absorbable gas concentration, the decrease of absorption flux was almost linear to the volumetric concentration of non-absorbable gas.