• Title/Summary/Keyword: Comsol

Search Result 203, Processing Time 0.029 seconds

Linear Stability Analysis for Combustion Instability in Solid Propellant Rocket (고체추진 로켓의 선형 안정성 요소에 대한 연구)

  • Kim, Hakchul;Kim, Junseong;Moon, Heejang;Sung, Honggye;Lee, Hunki;Ohm, Wonsuk;Lee, Dohyung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.5
    • /
    • pp.27-36
    • /
    • 2013
  • Linear stability analysis for combustion instability within a cylindrical port of solid rocket motor has been conducted. The analysis of acoustic energy has been performed by a commercial COMSOL code to obtain the mode function associated to each acoustic mode prior to the calculation of stability alpha. An instability diagnosis based on the linear stability analysis of Culick is performed where special interests have been focused on 5 stability factors(alpha) such as pressure coupling, nozzle damping, particle damping and additionally, flow turning effect and viscous damping to take into account the flow and viscosity effect near the fuel surface. The instability decay characteristics depending on the particle size is also analyzed.

Analysis of Flow Characteristic and Optimum Design for Subminiature Pressure Reducer Under High Pressure (고압 적용용 초소형 감압기 설계를 위한 유동 해석 및 최적 설계)

  • Lee, WonJun;Baek, JongTae;Yun, Rin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.8
    • /
    • pp.497-503
    • /
    • 2017
  • A theoretical study on oxygen flow is fundamental to comprehend the practical production of an oxygen respirator and its stability. In this study, an orifice-type pressure-reducing component was designed for the newly developed oxygen respirator, using the commercial CFD tool, COMSOL Multiphysics, which increases its operational time compared to the existing component. The orifice was optimized by changing the length by 3, 6, and 9 mm within the entire computational domain of the oxygen respirator. Based on an oxygen flow rate of 0.028 kg/s, the oxygen respirator equipped with the newly developed orifice satisfied the flow rate within 33% for a respirator inlet pressure of 300 bar, and within 32.7% for 50, 75, and 100 bar. In terms of component manufacturing, the orifice length was selected as 3 mm, which removes additional changes to the existing component.

An Analysis of Screen Printing using Solder Paste (솔더 페이스트를 이용한 스크린 프린팅 공정 해석)

  • Seo, Won-Sang;Min, Byung-Wook;Kim, Jong-Ho;Lee, Nak-Kyu;Kim, Jong-Bong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.1
    • /
    • pp.47-53
    • /
    • 2010
  • In this study, analyses on the stencil printing using solder paste were carried out. The key design parameters in the stencil printing process are printing conditions, stencil design, and solder paste properties. Among these parameters, the effects of physical properties of solder paste such as viscosity, surface tension, and contact angle on the stencil printing process were investigated. The analyses were performed for simple geometry and boundary conditions. In the analysis, solder paste was pushed into a stencil hole by pressure instead of printer pad. Considering the geometry and computational efficiency, axisymmetric analyses were adopted. A commercial software (COMSOL), which is well known in the area of micro-fluids analysis, was used. From the results, it was shown that viscosity of solder paste had an effect on the filling speed, while surface tension and contact angle had an effect on the filling shape.

Nanoaperture Design in Visible Frequency Range Using Genetic Algorithm and ON/OFF Method Based Topology Optimization Scheme (유전알고리즘 및 ON/OFF 방법을 이용한 가시광선 영역의 나노개구 형상의 위상최적설계)

  • Shin, Hyun Do;Yoo, Jeonghoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.12
    • /
    • pp.1513-1519
    • /
    • 2013
  • A genetic algorithm (GA) is an optimization technique based on natural evolution theory to find the global optimal solution. Unlike the gradient-based method, it can design nanoscale structures in the electric field because it does not require sensitivity calculation. This research intends to design a nanoaperture with an unprecedented shape by the topology optimization scheme based on the GA and ON/OFF method in the visible frequency range. This research mainly aims to maximize the transmission rate at a measuring area located 10nm under the exit plane and to minimize the electric distribution at other locations. The finite element analysis (FEA) and optimization process are performed by using the commercial package COMSOL combined with the Matlab programming. The final results of the optimized model are analyzed by a comparison of the electric field intensity and the spot size of near field with those of the initial model.

COB, COH Package LED Module Thermal Analysis Simulation (COB, COH Package LED Module 열 해석 시뮬레이션)

  • Choi, Keum-Yeon;Eo, Ik-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.11
    • /
    • pp.5117-5122
    • /
    • 2011
  • In this paper, thermal analysis simulation program by taking advantage of COMSOL Multiphysics, LED Module for the production of the most preferred package type, omitting the COH Type COB Type and board simulation of the thermal analysis is in progress. LED Module that passes through the Heat-sink of the simulation results, depending on the location of the COB Type Max. Approximately $78^{\circ}C$ ~ Min. Approximately $62^{\circ}C$, COH Type the Max. Approximately $88^{\circ}C$ ~ Min. Approximately $67^{\circ}C$ has been confirmed that the temperature stability. Compared with COB Type Max. AIthough temperature difference is about $10^{\circ}C$, Min. At a temperature of about $5^{\circ}C$ confirmed to be enough to reduce the gap, LED Point confirming the results of the temperature curves for COB Type Max. Approximately $100^{\circ}C$ ~ Min. Approximately $77^{\circ}C$, COH Type the Max. Approximately $100^{\circ}C$ ~ Min. Approximately $86^{\circ}C$ temperature stability was confirmed that, COB Type COH Type, compared to approximately $10^{\circ}C$ temperature was higher.

A Study on the Characteristics of Z-Trap and Improvement of Maintenance Ability in the Sewage Bay (오수받이 내 Z-트랩 특성 및 유지관리 능력 향상에 관한 연구)

  • Kim, Yong-Cheol;Lee, Chang-Woo
    • Journal of the Society of Disaster Information
    • /
    • v.15 no.3
    • /
    • pp.450-458
    • /
    • 2019
  • Purpose: The purpose of this study is to develop a new sewage bay that has removed its previous problems and verify the excellence of the maintainability of the new sewage bay. Method: The fluid characteristics in the developed sewage bay was analysed with computer simulation tool(COMSOL MultiphysicsTM ver. 3.2 ; COMSOL) and clarified the problems of the existing sewage bay. In addition, the durability of the newly developed sewage bay was verified by the long-term usability testing. Results: As a result of the simulation of a blocked drainage trap, an whirlpool and blockage did not occurred at the flow rate of 0.6m/sec, and we verified that switch device of drain trap was in good condition durably with 6 months long-term usability test. Conclusion: In this study, a newly advanced sewage bay was developed that solved the problems of the existing sewage bay structure. With the fluid simulation and the long-term usability tests, the excellence of the maintenance ability of the newly developed sewage bay was proved.

A Study on Inductive Power Line Communication with Metal Block Channel (금속블록 채널이 있는 유도형 전력선통신에 관한 연구)

  • Sohn, Kyung-Rak;Kim, Hyun-Sik
    • Journal of IKEEE
    • /
    • v.25 no.1
    • /
    • pp.95-100
    • /
    • 2021
  • If we know the location of the hull block and the welding feeder in the shipyard, we can easily obtain the location information of the worker. That data is very useful for implementing a workplace safety monitoring system. However, it is difficult to apply a fixed communication network to the workplace due to the specificity of the hull structure and welding process. In this study, inductive power line communication, which can replace dedicated communication line, was reviewed. A ferrite core was used as an inductive coupler to be installed on the power cable of the welding machine, and a nano-crystalline core was applied as a coupler to be fastened to the support rod of the metal block. In order to visualize the operating principle of the proposed couplers, 3D modeling and finite element analysis were performed with the COMSOL AC/DC module. In the communication performance test using an aluminum profile, when the communication channel was formed by the contact of the welding electrode, the bandwidth was kept above 6 Mbps.

Numerical analysis of acoustic radiation efficiency of plate structures with air bubble layers (기포층을 갖는 판 구조물의 음향 방사 효율에 관한 수치해석)

  • Sung-Ju Park;Kookhyun Kim;Cheolsoo Park;Jaehyuk Lee;Keunhwa Lee;Cheolwon Lee
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.3
    • /
    • pp.227-232
    • /
    • 2023
  • Underwater noise pollution has a significant impact on the marine environment. This study proposed a simple approach to estimate the acoustic radiation efficiency of structures with air bubble layers. The method considered the insertion loss caused by the air bubble layer through post-processing of numerical results, assuming that insertion loss is equivalent to attenuation as demonstrated by previous studies. The proposed approach was validated by comparing it with a fully coupled analysis for plate structure models. The commercial finite element program COMSOL Multiphysics was used for the acoustic-structure interaction analysis, and the acoustic characteristics of air bubble layer for the fully coupled analysis was simulated by on the Commander and Prosperetti theory. The trends indicated good agreement between the simple approach and the fully coupled analysis in terms of radiation efficiency. It is confirmed that the proposed method is providing insight into the principal mechanism of underwater noise reduction for the bubble layer on the wedge-shaped structure.

Analysis of Tilting Pad Journal Bearing Characteristics and Rotordynamics for Centrifugal Compressors Using Multiphysics Software (Multiphysics Software를 활용한 원심 압축기용 틸팅 패드 저널 베어링 특성과 회전체 동역학 분석)

  • Soyeon Moon;Jongwan Yun;Sangshin Park
    • Tribology and Lubricants
    • /
    • v.39 no.6
    • /
    • pp.268-272
    • /
    • 2023
  • This study explores the characteristics of tilting pad journal bearings used in the high-speed rotating shaft systems of centrifugal compressors. A centrifugal compressor is a high-speed rotating machine that is widely used to compress gases or vapors employed in various industrial applications. It transfers the centrifugal force of a fast-spinning impeller to the fluid and compresses it under high pressure. Many high-speed rotating shaft systems, which require high stability, use tilting pad journal bearings. The characteristics of these bearings can vary depending on several properties, and identifying the appropriate characteristics is essential to optimize the design on a case-to-case basis. In this study, the authors perform a time-dependent analysis of the properties of tilting pad journal bearings and the rotordynamics of the rotating shaft system using COMSOL Multiphysics software. Specifically, the authors analyze the characteristics of the tilting pad journal bearings by performing a parametric sweep using parameters such as pad clearance, maximum tilting angle, preload, number of pads, and pad pivot offset. The authors then use the results of the bearing-characteristics analysis to evaluate the vibration of the rotating shaft and verify its operation within a desirable range. The understanding gained from this study will allow us to determine the optimal properties of these bearings and the limiting operational speed using COMSOL Multiphysics software.

Thermal-hydraulic safety analysis of radioisotope production in HANARO using MCNP6 and COMSOL multiphysics: A feasibility study

  • Taeyun Kim;Bo-Young Han;Seongwoo Yang;Jaegi Lee ;Gwang-Min Sun;Byung-Gun Park;Sung-Joon Ye
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.3996-4001
    • /
    • 2023
  • The High-flux Advanced Neutron Application Reactor (HANARO) produces radioisotopes (RIs) (131I, 192Ir, etc.) through neutron irradiation on various RI production targets. Among them, 177Lu and 166Ho are particularly promising owing to their theranostic characteristics that facilitate simultaneous diagnosis and treatment. Prior to neutron irradiation, evaluating the nuclear heating of the RI production target is essential for ensuring the thermal-hydraulic safety of HANARO. In this study, the feasibility of producing 177Lu and 166Ho using irradiation holes of HANARO was investigated in terms of thermal-hydraulic safety. The nuclear heating rates of the RI production target by prompt and delayed radiation were calculated using MCNP6. The calculated nuclear heating rates were used as an input parameter in COMSOL Multiphysics to obtain the temperature distribution in an irradiation hole. The degree of temperature increase of the 177Lu and 166Ho production targets satisfied the safety criteria of HANARO. The nuclear heating rates and temperature distribution obtained through the in silico study are expected to provide valuable insight into the production of 177Lu and 166Ho using HANARO.