The accelerated growth of the internet and the enormous amount of data availability has become the primary reason for machine learning applications for data analysis and, more specifically, pattern recognition and decision making. In this paper, we focused on the crowdfunding site Kickstarter and collected the comments in order to apply neural networks to classify the projects based on the sentiments of backers. The power of customer reviews and sentiment analysis has motivated us to apply this technique in crowdfunding to find timely indications and identify suspicious activities and mitigate the risk of money loss.
There are various algorithms evaluating a threshold for image segmentation. Among them, Otsu's algorithm sets a threshold based on the histogram. It finds the between-class variance for all over gray levels and then sets the largest one as Otsu's optimal threshold, so we can see that Otsu's algorithm requires a lot of the computation. In this paper, we improved the amount of computational needs by using estimated Otsu's threshold rather than computing for all the threshold candidates. The proposed algorithm is compared with the original one in computation amount and accuracy. we confirm that the proposed algorithm is about 29 times faster than conventional method on single processor and about 4 times faster than on parallel processing architecture machine.
Journal of the Korean Data and Information Science Society
/
제27권1호
/
pp.265-274
/
2016
In this paper, we consider a diffusion risk process, in which, its surplus process behaves like a Brownian motion in-between adjacent epochs of claims. We assume that the claims occur following a Poisson process and their sizes are independent and exponentially distributed with the same intensity. Our main goal is to derive the exact formula of the joint moment generating function of the ruin time and the total amount of aggregated claim sizes until ruin in the diffusion risk process. We also provide a method for computing the related first and second moments using the joint moment generating function and the augmented matrix exponential function.
The decomposition of a structuring element for a morphological operation reduces the amount of the computation required for executing the operation. In this paper, we present a new technique for the decomposition of convex structuring elements for morphological operations. We formulated the linear constraints for the decomposition of a convex polygon in discrete space, then the constraints are applied to the decomposition of a convex structuring element. Also, a cost function is introduced to represent the optimal criteria for decomposition. We use linear integer programming technique to find the combination of basis structuring elements which minimizes the amount of the computation required for executing the morphological operation. Formulating different cost functions for different implementation methods and computer architectures, we can determine the optimal decompositions which guarantee the minimal amounts of computation on different computing environment.
We will provides a micro-pump infusion injector with the cloud networking for remote control. The existing infusion injector with controlled manually have an uncomfortable to use it inconveniently. The proposed remote control infusion, infusion system enables the identification and control of injected amount through the IOT function on th WEB. The micro-pump used is a piezo electric pump manufactured by using MEMS technology, and the amount of charge is varied depending on the frequency magnitude through the micro-controller. The micro-pump can adjust the speed of the fluid depending on the frequency and can be from 0.1ml / min to 7ml / min when the frequency is from 3 to 110Hz.
We present a method for transmitting 3D object information in real time in a telepresence system. Three-dimensional object information consists of a large amount of point cloud data, which requires high performance computing power and ultra-wideband network transmission environment to process and transmit such a large amount of data in real time. In this paper, multiple users can transmit object motion and facial expression information in real time even in small network bands by using GANs (Generative Adversarial Networks), a non-supervised learning machine learning algorithm, for real-time transmission of 3D point cloud data. In particular, we propose the creation of an object similar to the original using only the feature information of 3D objects using conditional GANs.
International Journal of Computer Science & Network Security
/
제24권4호
/
pp.51-59
/
2024
In this work, we focused on reducing the amount of image data to be sent by extracting and progressively sending prominent image features to high-performance computing systems taking into consideration the right amount of image data required by object identification application. We demonstrate that with our technique called Progressive Object Detection over a Lossless Network using Fragmented DCT Coefficients (Proficient), object identification applications can detect objects with at least 70% combined confidence level by using less than half of the image data.
본 논문은 이종 분산시스템을 위한 동적 부하균등 알고리즘을 제안하였다 본 알고리즘은 타스크들이 재배치할 수 있게 한다. 알고리즘의 핵심은 송신자로부터 수신자에게로 적절한 처리 요구량을 전송하는데 있다 본 전송량은 동적으로 송신자와 수신자간 협상과정에서 결정된다. 이러한 전송량이 결정될 때 고려되는 요소들은 다른 노드의 처리속도 현재 송신자와 수신자간의 부하상태, 재배치하기에 적절한 처리요구 등이다. 본 연구에서는 또한 이종시스템을 위해 특별히 설계된 부하상태 전략도 제안하였다. 연구결과는 제안한 알고리즘이 현존하는 알고리즘에 비해 뛰어난 성능을 보였고 시스템 속성이 다양한 측면에서 안정적이다.
일반적으로 이미지나 공간 데이터베이스와 같은 다차원의 특징을 갖는 데이터들은 대용량의 저장공간을 요구한다. 이 대량의 데이터를 하나의 워크스테이션에 저장하고 검색을 수행하는 데는 한계가 있다. 최근 활발히 연구되고 있는 병렬 컴퓨팅 환경에서 이들에 대한 저장 및 검색을 수행한다면 훨씬 더 높은 성능 향상을 가져 올 수 있을 것이다. 이 논문에서는 기존에 존재하는 병렬 컴퓨팅 환경의 장점을 최대한 이용하는 병렬 고차원 색인구조를 제안한다. 제안하는 색인구조는 nP(프로세서)-nD(디스크)와 lP-nD의 결합 형태인 nP-n$\times$mD의 구조라고 볼 수 있다. 노드 구조는 팬-아웃을 증가시키고 트리의 높이를 줄일 수 있도록 설계되었다. 또한 I/O의 별렬성을 최대화하는 범위 탐색 알고리즘을 제안하고 이것을 K-최근접 탐색 알고리즘에 적용하여 탐색 성능향상을 꾀한다. 마지막으로, 다양한 환경에서의 실험을 통해 제안하는 색인구조의 탐색 성능을 테스트하고 기존에 제안된 병렬 다차원 색인구조와의 비교를 통해 제안한 방법의 우수함을 보인다.
기존의 Stereoscopy영상의 생성 방법은 2개의 촬영용 렌즈를 일정한 간격으로 띄워놓고 같은 피사체를 촬영하여 좌우 시점의 영상을 생성하는 방법을 이용하게 된다. 하지만 Stereoscopy 카메라를 이용한 3차원 TV 수신의 경우에 좌시점과 우시점에 대한 2개의 영상을 모두 동시에 전송해야 하기 때문에 대역폭의 부담이 크다. 이에 보다 효율적인 여러 방법들에 대한 논의가 이루어지고 있다. 그중 DIBR(Depth Image Based Rendering)은 한장의 영상과 이에 대한 Depth정보를 이용하여 좌시점과 우시점의 영상을 생성하기 때문에 전송 대역폭을 줄일 수 있으며, 이러한 점으로 인하여 기존의 Static Scene에서 DIBR Image 생성에 대한 다양한 Algorithm이 연구되어 왔다. 본 논문에서는 반전된 Depth 영상을 이용하여 자연스럽게 Hole을 채움과 동시에 주변 배경의 왜곡 또한 최소화하는 Gaussian Hole-Filling 방법을 제안하려 한다. 또한 각 Algorithm들의 성능을 비교, 계산하여 각 Algorithm들의 효용성을 분석하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.