• Title/Summary/Keyword: Computing Resource

Search Result 852, Processing Time 0.027 seconds

Efficient Resource Slicing Scheme for Optimizing Federated Learning Communications in Software-Defined IoT Networks

  • Tam, Prohim;Math, Sa;Kim, Seokhoon
    • Journal of Internet Computing and Services
    • /
    • v.22 no.5
    • /
    • pp.27-33
    • /
    • 2021
  • With the broad adoption of the Internet of Things (IoT) in a variety of scenarios and application services, management and orchestration entities require upgrading the traditional architecture and develop intelligent models with ultra-reliable methods. In a heterogeneous network environment, mission-critical IoT applications are significant to consider. With erroneous priorities and high failure rates, catastrophic losses in terms of human lives, great business assets, and privacy leakage will occur in emergent scenarios. In this paper, an efficient resource slicing scheme for optimizing federated learning in software-defined IoT (SDIoT) is proposed. The decentralized support vector regression (SVR) based controllers predict the IoT slices via packet inspection data during peak hour central congestion to achieve a time-sensitive condition. In off-peak hour intervals, a centralized deep neural networks (DNN) model is used within computation-intensive aspects on fine-grained slicing and remodified decentralized controller outputs. With known slice and prioritization, federated learning communications iteratively process through the adjusted resources by virtual network functions forwarding graph (VNFFG) descriptor set up in software-defined networking (SDN) and network functions virtualization (NFV) enabled architecture. To demonstrate the theoretical approach, Mininet emulator was conducted to evaluate between reference and proposed schemes by capturing the key Quality of Service (QoS) performance metrics.

An efficient Broadcast Authentication Scheme for Wireless Sensor Networks (무선 센서 네트워크에서의 효율적 Broadcast Authentication 방안)

  • Moon Hyung-Seok;Lee Sung-Chang
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.6 s.348
    • /
    • pp.23-29
    • /
    • 2006
  • It is difficult to apply conventional security algorithms to the wireless sensor networks composed of nodes that have resource constraints such as memory, computing, power resources limitation. Generally, shared key based algorithms with low resource consumption and short key length are used for broadcast packets in authentication of base station. But it is not suitable that all the nodes hold the same shared key only for packet authentication. Recently, broadcast authentication algorithm for sensor network is proposed, which uses key chain generation by one-way hash function, Message Authentication Code generation by each keys of the key chains and delayed key disclosure. It provides suitable authentication method for wireless sensor networks but may leads to inefficient consequence with respect to network conditions such as broadcast ratio, key chain level, and so on. In this paper, we propose an improved broadcast authentication algorithm that uses key chain link and periodical key disclosure. We evaluated the performance of proposed algorithm using TOSSIM(TinyOS Simulator) in TinyOS. The results show that the proposed algorithm ensures low authentication delay, uses memory and computing resource of receiving nodes efficiently and reduces the amount of packet transmitting/receiving.

A Study on the Architecture of Cloud Hospital Information System for Small and Medium Sized Hospitals (중소형 병원의 클라우드 병원정보시스템 서비스 체계에 관한 연구)

  • Lee, Nan Kyung;Lee, Jong Ok
    • The Journal of Society for e-Business Studies
    • /
    • v.20 no.3
    • /
    • pp.89-112
    • /
    • 2015
  • Recently, the business environment of healthcare has changed rapidly due to the entering the mobile era, the intensifying global competition, and the explosion of healthcare needs. Despite of necessity in expanding new IT-based medical services and investing IT resources to respond environmental changes, the small and medium sized hospitals could not realize these requirements due to the limited management resources. CHISSMH is designed and presented in this research to provide high valued clouding medical services with reasonable price. CHISMH is designed and presented in this research to provide high valued medical services with reasonable price through cloud computing. CHISME is designed to maximize resource pooling and sharing through the visualization. By doing so, Cloud Service provider could minimize maintenance cost of cloud data center, provide high level services with reasonable pay-per-use price. By doing so, Cloud Service provider could minimize maintenance cost of cloud data center, and could provide high level services with reasonable pay-per-use price. CHISME is expected to be base framework of cloud HIS services and be diffusion factor of cloud HIS services Operational experience in CHISSMH with 15 hospitals is analyzed and presented as well.

Resource Weighted Load Distribution Policy for Effective Transcoding Load Distribution (효과적인 트랜스코딩 부하 분산을 위한 자원 가중치 부하분산 정책)

  • Seo, Dong-Mahn;Lee, Joa-Hyoung;Choi, Myun-Uk;Kim, Yoon;Jung, In-Bum
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.11 no.5
    • /
    • pp.401-415
    • /
    • 2005
  • Owing to the improved wireless communication technologies, it is possible to provide streaming service of multimedia with PDAs and mobile phones in addition to desktop PCs. Since mobile client devices have low computing power and low network bandwidth due to wireless network, the transcoding technology to adapt media for mobile client devices considering their characteristics is necessary. Transcoding servers transcode the source media to the target media within corresponding grades and provide QoS in real-time. In particular, an effective load balancing policy for transcoding servers is inevitable to support QoS for large scale mobile users. In this paper, the resource weighted load distribution policy is proposed for a fair load balance and a more scalable performance in cluster-based transcoding servers. Our proposed policy is based on the resource weighted table and number of maximum supported users, which are pre-computed for each pre-defined grade. We implement the proposed policy on cluster-based transcoding servers and evaluate its fair load distribution and scalable performance with the number of transcoding servers.

Greedy Technique for Smart Grid Demand Response Systems (스마트 그리드 수요반응 시스템을 위한 그리디 스케줄링 기법)

  • Park, Laihyuk;Eom, Jaehyeon;Kim, Joongheon;Cho, Sungrae
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.3
    • /
    • pp.391-395
    • /
    • 2016
  • In the last few decades, global electricity consumption has dramatically increased and has become drastically fluctuating and uncertain causing blackout. Due to the unexpected peak electricity demand, we need significant electricity supply. The solutions to these problems are smart grid system which is envisioned as future power system. Smart grid system can reduce electricity peak demand and induce effective electricity consumption through various price policies, demand response (DR) control methodologies, and state-of-the-art smart equipments in order to optimize electricity resource usage in an intelligent fashion. Demand response (DR) is one of the key technologies to enable smart grid. In this paper, we propose greedy technique for demand response smart grid system. The proposed scheme focuses on minimizing electricity bills, preventing system blackout and sacrificing user convenience.

A Function Level Static Offloading Scheme for Saving Energy of Mobile Devices in Mobile Cloud Computing (모바일 클라우드 컴퓨팅에서 모바일 기기의 에너지 절약을 위한 함수 수준 정적 오프로딩 기법)

  • Min, Hong;Jung, Jinman;Heo, Junyoung
    • Journal of KIISE
    • /
    • v.42 no.6
    • /
    • pp.707-712
    • /
    • 2015
  • Mobile cloud computing is a technology that uses cloud services to overcome resource constrains of a mobile device, and it applies the computation offloading scheme to transfer a portion of a task which should be executed from a mobile device to the cloud. If the communication cost of the computation offloading is less than the computation cost of a mobile device, the mobile device commits a certain task to the cloud. The previous cost analysis models, which were used for separating functions running on a mobile device and functions transferring to the cloud, only considered the amount of data transfer and response time as the offloading cost. In this paper, we proposed a new task partitioning scheme that considers the frequency of function calls and data synchronization, during the cost estimation of the computation offloading. We also verified the energy efficiency of the proposed scheme by using experimental results.

Grid Accounting Information System with Access Control (접근 제어를 이용한 그리드 어카운팅 정보 시스템)

  • Kim Beob Kyun;Jang Haeng Jin;An Dong Un;Chung Seung Jong
    • Journal of Internet Computing and Services
    • /
    • v.6 no.4
    • /
    • pp.75-84
    • /
    • 2005
  • Grid computing enables a shift from a localized resource computing model to a fully-distributed virtual organization with shared resources, Accounting is one of the main obstacles to widespread adoption of the Grid. Accounting has until recently, been a sparsely-addressed problem, particularly in practice. In this paper, we design and implement the accounting information gathering system. Accounting information gathered at each local system does not include grid-aware information. To be useful in grid environment, grid user information must be included in accounting information. To make it useful in grid environment, we add grid user information with PGAM. Implemented system is based on OGSA, following GSAX framework of RUS-WG in GGF. And the schema of accounting information is following usage Record Fields of UR-WG in GGF. Also, the accounting information integrating and monitoring tool for system management in the Grid environment are implemented.

  • PDF

Energy-Efficient Resource Allocation for Application Including Dependent Tasks in Mobile Edge Computing

  • Li, Yang;Xu, Gaochao;Ge, Jiaqi;Liu, Peng;Fu, Xiaodong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.6
    • /
    • pp.2422-2443
    • /
    • 2020
  • This paper studies a single-user Mobile Edge Computing (MEC) system where mobile device (MD) includes an application consisting of multiple computation components or tasks with dependencies. MD can offload part of each computation-intensive latency-sensitive task to the AP integrated with MEC server. In order to accomplish the application faultlessly, we calculate out the optimal task offloading strategy in a time-division manner for a predetermined execution order under the constraints of limited computation and communication resources. The problem is formulated as an optimization problem that can minimize the energy consumption of mobile device while satisfying the constraints of computation tasks and mobile device resources. The optimization problem is equivalently transformed into solving a nonlinear equation with a linear inequality constraint by leveraging the Lagrange Multiplier method. And the proposed dual Bi-Section Search algorithm Bi-JOTD can efficiently solve the nonlinear equation. In the outer Bi-Section Search, the proposed algorithm searches for the optimal Lagrangian multiplier variable between the lower and upper boundaries. The inner Bi-Section Search achieves the Lagrangian multiplier vector corresponding to a given variable receiving from the outer layer. Numerical results demonstrate that the proposed algorithm has significant performance improvement than other baselines. The novel scheme not only reduces the difficulty of problem solving, but also obtains less energy consumption and better performance.

Implementation of Data processing of the High Availability for Software Architecture of the Cloud Computing (클라우드 서비스를 위한 고가용성 대용량 데이터 처리 아키텍쳐)

  • Lee, Byoung-Yup;Park, Junho;Yoo, Jaesoo
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.2
    • /
    • pp.32-43
    • /
    • 2013
  • These days, there are more and more IT research institutions which foresee cloud services as the predominant IT service in the near future and there, in fact, are actual cloud services provided by some IT leading vendors. Regardless of physical location of the service and environment of the system, cloud service can provide users with storage services, usage of data and software. On the other hand, cloud service has challenges as well. Even though cloud service has its edge in terms of the extent to which the IT resource can be freely utilized regardless of the confinement of hardware, the availability is another problem to be solved. Hence, this paper is dedicated to tackle the aforementioned issues; prerequisites of cloud computing for distributed file system, open source based Hadoop distributed file system, in-memory database technology and high availability database system. Also the author tries to body out the high availability mass distributed data management architecture in cloud service's perspective using currently used distributed file system in cloud computing market.

Toward Optimal FPGA Implementation of Deep Convolutional Neural Networks for Handwritten Hangul Character Recognition

  • Park, Hanwool;Yoo, Yechan;Park, Yoonjin;Lee, Changdae;Lee, Hakkyung;Kim, Injung;Yi, Kang
    • Journal of Computing Science and Engineering
    • /
    • v.12 no.1
    • /
    • pp.24-35
    • /
    • 2018
  • Deep convolutional neural network (DCNN) is an advanced technology in image recognition. Because of extreme computing resource requirements, DCNN implementation with software alone cannot achieve real-time requirement. Therefore, the need to implement DCNN accelerator hardware is increasing. In this paper, we present a field programmable gate array (FPGA)-based hardware accelerator design of DCNN targeting handwritten Hangul character recognition application. Also, we present design optimization techniques in SDAccel environments for searching the optimal FPGA design space. The techniques we used include memory access optimization and computing unit parallelism, and data conversion. We achieved about 11.19 ms recognition time per character with Xilinx FPGA accelerator. Our design optimization was performed with Xilinx HLS and SDAccel environment targeting Kintex XCKU115 FPGA from Xilinx. Our design outperforms CPU in terms of energy efficiency (the number of samples per unit energy) by 5.88 times, and GPGPU in terms of energy efficiency by 5 times. We expect the research results will be an alternative to GPGPU solution for real-time applications, especially in data centers or server farms where energy consumption is a critical problem.