• Title/Summary/Keyword: Computer-aided design/computer-aided manufacturing

Search Result 403, Processing Time 0.031 seconds

Comparison of retentive force and wear pattern of Locator® and ADD-TOC attachments combined with CAD-CAM milled bar

  • Chae, Sung-Ki;Cho, Won-Tak;Choi, Jae-Won;Bae, Eun-Bin;Bae, Ji-Hyeon;Bae, Gang-Ho;Huh, Jung-Bo
    • The Journal of Advanced Prosthodontics
    • /
    • v.14 no.1
    • /
    • pp.12-21
    • /
    • 2022
  • PURPOSE. The purpose of this study was to investigate changes in retention and wear pattern of Locator® and ADD-TOC attachments on a digital milled bar by performing chewing simulation and repeated insertion/removal of prostheses in fully edentulous models. MATERIALS AND METHODS. Locator (Locator®; Zest Anchors Inc., Escondido, CA, USA) was selected as the control group and ADD-TOC (ADD-TOC; PNUAdd Co., Ltd., Busan, Republic of Korea) as the experimental group. A CAD-CAM milled bar was mounted on a master model and 3 threaded holes for connecting a bar attachment was formed using a tap. Locator and ADD-TOC attachments were then attached to the milled bar. Simulated mastication and repeated insertion/removal were performed over 400,000 cyclic loadings and 1,080 insertions/removals, respectively. Wear patterns on deformed attachment were investigated by field emission scanning electron microscopy. RESULTS. For the ADD-TOC attachments, chewing simulation and repeated insertion/removal resulted in a mean initial retentive force of 24.43 ± 4.89 N, which were significantly lower than that of the Locator attachment, 34.33 ± 8.25 N (P < .05). Amounts of retention loss relative to baseline for the Locator and ADD-TOC attachments were 21.74 ± 7.07 and 8.98 ± 5.76 N (P < .05). CONCLUSION. CAD-CAM milled bar with the ADD-TOC attachment had a lower initial retentive force than the Locator attachment. However, the ADD-TOC attachment might be suitable for long-term use as it showed less deformation and had a higher retentive force after simulated mastication and insertion/removal repetitions.

Full mouth rehabilitation with fixed implant-supported prosthesis using temporary denture and double digital scanning technique: a case report (임시 의치와 이중 디지털 스캐닝 기법을 활용한 전악 고정성 임플란트 수복 증례)

  • Seok-Hyun Shin;Chan-Ik Park;Se-Ha Kang;Ji-Eun Moon;Min-Seok Oh;Chul-Min Park;Woo-Jin Jeon;Seong-Gu Han;Sun-Jae Kim;Su-Jin Choi
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.61 no.3
    • /
    • pp.245-256
    • /
    • 2023
  • When restoring with a dental digital system for implant-supported prosthesis, a double digital scanning technique is required: an intraoral scan of the three-dimensional implant location and intraoral scan after placement of temporary denture or provisional prosthesis. During the intraoral scan, the use of scan body as a stable landmark can improve the accuracy of digital impression and simplify laboratory process. In this case, a full-digital system was used to plan and fabricate a custom abutment, provisional prosthesis, and definitive prosthesis. After implant placement, the scan area of the intraoral scan body connected with implant and the intraoral scan body marked on the inside of temporary denture were superimposed. Out of the superimposed files, a custom abutment and provisional prosthesis were fabricated which match the vertical dimension of temporary denture, and definitive prosthesis was fabricated based on provisional prosthesis. We report this case because result has been functionally and esthetically satisfactory by using vertical dimension and central relation set during the fabrication of temporary denture to the definitive prosthesis.

Fabricating retrofit crowns to an existing removable partial denture by CAD-CAM: a case report (CAD-CAM을 이용한 RPD 지대치의 retrofit crown 제작 증례)

  • Hyuksoon Lee;Seong-A Kim;Joo-Hyuk Bang;Sung Yong Kim;Hee-Won Jang;Keun-Woo Lee;Yong-Sang Lee
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.62 no.2
    • /
    • pp.140-145
    • /
    • 2024
  • Removable partial denture wearers are exposed to the risks that remaining teeth get damaged by caries, attritions, erosion, and fracture. In the case of damaged abutment tooth which should fit to Removable partial denture (RPD), the fabrication of surveyed crown is followed by the making of RPD. However, making new denture takes a long time, and needs several processes and costs. Also, patients should get used to new denture. If other abutment teeth and edentulous ridges provide the existing denture with support, retention, and stability, use of existing denture is considered clinically acceptable. In this situation, fabricating retrofit crowns to an existing removable partial denture makes patient use existing denture, cuts costs, and reduces discomfort. In this case, severely worn teeth were restored using monolithic zirconia crown which fit to an existing removable partial denture by CAD-CAM. Moreover, support, retention, and stability of the denture were improved, and both doctor and patient were satisfied with the result.

The study on the shear bond strength of resin and porcelain to Titanium (티타늄에 대한 레진과 도재의 결합 강도에 관한 연구)

  • Park, Ji-Man;Kim, Yeong-Soon;Jun, Sul-Gi;Park, Eun-Jin
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.47 no.1
    • /
    • pp.46-52
    • /
    • 2009
  • Statement of problem: Recently, titanium has become popular as superstructure material in implant dentistry because titanium superstructure can be easily milled by means of computer-aided design and manufacture (CAD/CAM) technique. But retention form such as nail head or bead cannot be cut as a result of technical limitation of CAD/CAM milling and bond strength between titanium and porcelain is not as strong as that of conventional gold or metal alloy. Purpose: The objective of this study was to evaluate the shear bond strength of three different materials: heat curing resin, composite resin, porcelain which were bonded to grade II commercially pure Titanium (CP-Ti). Material and methods: Thirty seven CP-Ti discs with 9 mm diameter, 10 mm height were divided into three groups and were bonded with heat curing resin (Lucitone 199), indirect composite resin (Sinfony), and porcelain (Triceram) which were mounted in a former with 7 mm diameter and 1 mm height. Samples were thermocycled for 1000 cycles at between $5-55^{\circ}C$. Shear bond strength (MPa) was measured with Instron Universal Testing Machine with cross head speed of 1 mm/min. The failure pattern was observed at the fractured surface and divided into adhesive, cohesive, and combination failure. The data were analyzed by one-way ANOVA and Scheffe's multiple range test (${\alpha}=0.05$). Results: Lucitone 199 ($17.82{\pm}5.13\;MPa$) showed the highest shear bond strength, followed by Triceram ($12.97{\pm}2.11\;MPa$), and Sinfony ($6.00{\pm}1.31\;MPa$). Most of the failure patterns in Lucitone 199 and Sinfony group were adhesive failure, whereas those in Triceram group were combination failure. Conclusion: Heat curing resin formed the strongest bond to titanium which is used as a CAD/CAM milling block. But the bond strength is still low compared with the bond utilizing mechanical interlocking and there are many adhesive failures which suggest that more studies to enhance bond strength are needed.

Microstructural Analysis of STS316L Samples Manufactured by Powder Bed Fusion and Post-heat Treatments (Powder Bed Fusion 공정으로 제조한 STS 316L의 미세조직과 후속 열처리 특성)

  • Song, S.Y.;Lee, D.W.;Cong, D.V.;Kim, J.W.;Lee, S.M.;Joo, S.H.;Kim, Jin-Chun
    • Journal of Powder Materials
    • /
    • v.29 no.1
    • /
    • pp.14-21
    • /
    • 2022
  • In the powder bed fusion (PBF) process, a 3D shape is formed by the continuous stacking of very fine powder layers using computer-aided design (CAD) modeling data, following which laser irradiation can be used to fuse the layers forming the desired product. In this method, the main process parameters for manufacturing the desired 3D products are laser power, laser speed, powder form, powder size, laminated thickness, and laser diameter. Stainless steel (STS) 316L exhibits excellent strength at high temperatures, and is also corrosion resistant. Due to this, it is widely used in various additive manufacturing processes, and in the production of corrosion-resistant components with complicated shapes. In this study, rectangular specimens have been manufactured using STS 316L powder via the PBF process. Further, the effect of heat treatment at 800 ℃ on the microstructure and hardness has been investigated.

Effect of cement space on marginal and internal fit of a zirconia core fabricated using by additive manufacturing (시멘트 공간이 적층 가공으로 제작한 지르코니아 하부구조물의 변연 및 내면 적합도에 미치는 영향)

  • Ji-Won Min;Se-Yeon Kim;Jae-Hong Kim
    • Journal of Technologic Dentistry
    • /
    • v.46 no.1
    • /
    • pp.1-7
    • /
    • 2024
  • Purpose: The goal of this study was to determine the clinical acceptability of various cement space settings for the marginal and internal fit of a zirconia core manufactured using additive manufacturing. Methods: The maxillary right incisor served as the master model. After scanning the maxillary right incisor with a dental 3D (three-dimensional) scanner, the stereo lithography file was created using different cement space settings of 40, 120, and 200 ㎛ using computer-aided design software (Dental System 2018; 3Shape). The marginal and internal fit of the 3 groups were determined using the silicon replica technique. Measurement points were divided into the following three categories: margin, axial wall, and incisal. To ensure more accurate measurements, these three measurement points were divided into 8 points. The Shapiro-Wilk, one-way ANOVA, and Tukey's honestly significant difference test (for all tests α=0.05) were the statistical analyses that were included in the study. Results: The CS (cement space)-200 group had better marginal and internal fit than the CS-40 and CS-120 groups, and there were statistically significant differences at the marginal and incisal points, except for the axial wall points. CS-200 group, both marginal and internal fit were within 120 ㎛, which is the clinically acceptable value. Conclusion: This study suggests that a 200 ㎛ cement space setting is ideal for optimal marginal and internal fit of 3D-printed ceramic crowns.

Study on the Design and Analysis of a 4-DOF Robot for Trunk Rehabilitation (체간 재활을 위한 4-DOF 로봇의 설계 및 분석에 관한 연구)

  • Eizad, Amre;Pyo, Sanghun;Lee, Geonhyup;Lyu, Sung-Ki;Yoon, Jungwon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.7
    • /
    • pp.41-51
    • /
    • 2020
  • This paper presents the development of a robotic system for rehabilitation of the trunk's ability to maintain postural control under different balance conditions. The system, developed with extensive input from rehabilitation and biomedical engineering experts, consists of a seat mounted on a robotic mechanism capable of moving it with four degrees of freedom (3 rotational and 1 translational). The seat surface has built in instrumentation to gauge the movements of the user's center of pressure (COP) and it can be moved either to track the movements of the COP or according to operator given commands. The system allows two types of leg support. A ground mounted footrest allows participation of legs in postural control while a seat connected footrest constrains the leg movement and limits their involvement in postural control. The design evolution over several prototypes is presented and computer aided structural analysis is used to determine the feasibility of the designed components. The system is pilot tested by a stroke patient and is determined to have potential for use as a trunk rehabilitation tool. Future works involve more detailed studies to evaluate the effects of using this system and to determine its efficacy as a rehabilitation tool.

Complete mouth rehabilitation with fixed implant-supported prosthesis using temporary denture and dental CAD-CAM (완전 무치악 환자에서 임시 의치와 치과용 CAD-CAM을 활용한 전악 고정성 임플란트 회복 증례)

  • Jeon, Sol;Yoon, Hyung-In;Lee, Jae-Hyun;Yeo, In-Sung Luke;Han, Jung-Suk
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.60 no.1
    • /
    • pp.100-109
    • /
    • 2022
  • Installation of dental implants at optimal angles and positions is critical in long-term stable implant-supported restorations. Surgery and prosthodontic procedures should be performed accurately as the treatment is planned. In this clinical case, Computer aided design and manufacturing technology was used not only to establish a precise surgical plan, but also to fabricate both provisional and definitive fixed prostheses. A surgical guide was designed to install the implants at proper positions for the definitive prostheses. The patient's esthetic information, which was necessary for the new provisional and definitive fixed prostheses, was obtained from the existing temporary dentures. Finally, the complete mouth fixed implant-supported rehabilitation using monolithic zirconia provided the patient with functionally and esthetically satisfactory prostheses.

Effects of Variation in Process Parameters on Cavity Pressure and Mechanical Strength of Molded Parts in LSR Injection Molding (LSR 사출성형의 공정조건 변화가 캐비티 압력 및 성형품의 기계적 강도에 미치는 영향)

  • Park, Hyung Pil;Cha, Baeg Soon;Lee, Jeong Won;Ko, Young Bae;Kim, Sang Gweon;Jung, Tae Sung;Kim, Dong Han;Rhee, Byung Ohk
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.2
    • /
    • pp.206-212
    • /
    • 2014
  • Liquid silicone rubber (LSR) has been widely used in automotive, electrical, and medical components. Thus, research on the use of LSR in the injection molding process is required to obtain high-quality and high-performance products. In this study, a mold was fabricated to examine the effects of the process parameters on the molding and mechanical properties of LSR parts. A computer-aided engineering analysis was used to optimize the air vent depth and curing temperature to decrease the flash at the air vents caused by the low viscosity of LSR. Temperature and pressure sensors were mounted in the mold to determine the effects of the process parameters on the temperature and pressure in the cavity. The tensile strength of the LSR parts was also examined in relation to the process parameters.

Production of Window Motor Assembly Parts in Automotive Body (자동차 전장에서 윈도우 모터 조립 부품의 생산)

  • Lee, Jeong-Ick
    • Journal of the Korea Convergence Society
    • /
    • v.3 no.4
    • /
    • pp.29-34
    • /
    • 2012
  • Power window motor assembly including ECU system is important to doors of automobile. This study is done for own development instead of importing of power window motor assembly. This paper is written under five specific subjects. The first, making of prototype sample and analysis of mass-production problem using CAE, the second, design of mass-production mold(2D and 3D), the third, manufacturing of sample mold, the fourth, tryout and measuring of 3 dimensions, the fifth, data analysis and mold modify. In the among them, product sample and analysis of mass-production using CAE, design and manufacture of mass-production mold, and production of sample mold are successfully done. In the results, it is made clear that two cavity and one gate are proper to make a mold of power window motor assembly housing. Besides, it is acquired own technology for mass-production of power window motor.