• Title/Summary/Keyword: Computer-Aided Manufacturing

Search Result 489, Processing Time 0.023 seconds

Fabrication of complete dentures made with monolithic discs through CAD/CAM using facial scan data and individual tray duplicating temporary denture: a case report (안면스캔 데이터와 임시의치를 복제한 개인 트레이를 활용하여 CAD/CAM을 통한 monolithic disc로 제작한 총의치 수복: 증례 보고)

  • Ju Hyun Kim;Soo-Yeon Shin
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.39 no.3
    • /
    • pp.158-167
    • /
    • 2023
  • As digital technology has advanced in the field of dentistry, the use of computer-aided design/computer-aided manufacturing (CAD/CAM) has brought changes to the stages of dental treatment. The use of CAD/CAM technology in dental restoration offers clinical efficiency and convenience by reducing production time and appointment intervals, while also simplifying the fabrication process to reduce errors. In this case, digital replication and printing of temporary teeth were used to aid a patient with complex medical histories and physical disabilities. The final impression obtained with silicone impression material included information on the vertical dimension, centric relation, and the angle and length of the anterior teeth, which shortened the production time and appointment intervals and increased patient satisfaction. The final restoration was fabricated using milling and monolithic disc techniques, demonstrating appropriate stability, retention, and support, resulting in functional and aesthetic satisfaction.

A Computer-Aided Inspection Planning System for On-Machine Measurement - Part I : Global Inspection Planning -

  • Lee, Hong-Hee;Cho, Myeong-Woo;Yoon, Gil-Sang;Choi, Jin-Hwa
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.8
    • /
    • pp.1349-1357
    • /
    • 2004
  • Computer-Aided Inspection Planning (CAIP) is the integration bridge between CAD/CAM and Computer Aided Inspection (CAI). A CAIP system for On-Machine Measurement (OMM) is proposed to inspect the complicated mechanical parts efficiently during machining or after machining. The inspection planning consists of Global Inspection Planning (GIP) and Local Inspection Planning (LIP). In the GIP, the system creates the optimal inspection sequence of the features in a part by analyzing the various feature information such as the relationship of the features, Probe Approach Directions (PAD), etc. Feature groups are formed for effective planning, and special feature groups are determined for sequencing. The integrated process and inspection plan is generated based on the sequences of the feature groups and the features in a feature group. A series of heuristic rules are developed to accomplish it. In the LIP of Part II, the system generates inspection parameters. The integrated inspection planning is able to determine optimum manufacturing sequence for inspection and machining processes. Finally, the results are simulated and analyzed to verify the effectiveness of the proposed CAIP.

Accuracy evaluation of dental models manufactured by CAD/CAM milling method and 3D printing method

  • Jeong, Yoo-Geum;Lee, Wan-Sun;Lee, Kyu-Bok
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.3
    • /
    • pp.245-251
    • /
    • 2018
  • PURPOSE. To evaluate the accuracy of a model made using the computer-aided design/computer-aided manufacture (CAD/CAM) milling method and 3D printing method and to confirm its applicability as a work model for dental prosthesis production. MATERIALS AND METHODS. First, a natural tooth model (ANA-4, Frasaco, Germany) was scanned using an oral scanner. The obtained scan data were then used as a CAD reference model (CRM), to produce a total of 10 models each, either using the milling method or the 3D printing method. The 20 models were then scanned using a desktop scanner and the CAD test model was formed. The accuracy of the two groups was compared using dedicated software to calculate the root mean square (RMS) value after superimposing CRM and CAD test model (CTM). RESULTS. The RMS value ($152{\pm}52{\mu}m$) of the model manufactured by the milling method was significantly higher than the RMS value ($52{\pm}9{\mu}m$) of the model produced by the 3D printing method. CONCLUSION. The accuracy of the 3D printing method is superior to that of the milling method, but at present, both methods are limited in their application as a work model for prosthesis manufacture.

An Application of Genetic Algorithm for Efficient Grating Allocation (효율적인 그레이팅 배치를 위한 유전 알고리즘의 적용)

  • Lee, Jung-Gyu;Cho, Tae-Ho
    • Journal of the Korea Society for Simulation
    • /
    • v.15 no.4
    • /
    • pp.137-142
    • /
    • 2006
  • D/In modern production industries, computer aided systems have been improving the efficiency and convenience of the various stages of work. However. as the complexity of computerized production systems increases, various techniques are still necessary. The problem we addressed occurs in computer systems that automatically make manufacturing process plans in the metal grating manufacturing industry. In the grating layout design, the key to saving the manufacturing cost is to find a design with the minimal number of cutting operations. The proposed genetic algorithm explores the feasible alternatives within the space until an optimal solution is obtained.

  • PDF

A Study on 3D modeling using a 3D scanner and VisualLISP (3D scanner 와 VisualLISP을 이용한 3차원 모델링에 관한 연구)

  • 김세민;이승수;김민주;장성규;전언찬
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.410-413
    • /
    • 2001
  • This paper is to model a 3D-shape product applying mathematically the data acquired from a 3D scanner and using an Automatic Design Program. The research studied in the reverse engineering up to now has been developed continuously and surprisingly. However, forming 3D-shape solid models in CAE and CAM, based on the research, the study leaves much to be desired. Especially, analyses and studies reverse-designing automatically using measured data after manufacturing. Consequently, we are going to acquire geometric data using an 3D scanner in this study with which we will open a new field of reverse engineering by a program whic hcan design a 3D-shape solid model in a CAD-based program automatically.

  • PDF

Development of an Automatic Pump Design System Using AutoCAD (AutoCAD 프로그램을 이용한 자동 펌프설계 시스템 개발)

  • 김일수;정영재;이창우;박주석
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.1
    • /
    • pp.91-96
    • /
    • 2002
  • Recently industry has moved towards automated operations with the goal of achieving better product quality greater productivity and reliability The pump design in characterized by extensive utilization of the related database which contains performance data. The inputs to the system are through interactive dialogue sessions and the basic input consist of flow rate, head, of fluid efficiency and the customer special requirements. These basic inputs along with the numerous rules in the knowledge bases and the mathematical modeling enable the effective design of the pump industry This paper represents the development of an automatic pump design system that was composed of a main program the data input module the drawing module the drawing edit module and was programed by the AutoLISP language under the Auto CAD program The developed system ultimately generates the design for a pump through the AutoCAD language.

A Study on the Optimized Parting Surface Creation for a Micro Fan (마이크로 팬의 최적 금형파팅면 생성에 관한 연구)

  • 최상련
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.245-250
    • /
    • 1999
  • In order to design micro-fan appropriately, flow chacracteristics and mechanics should be carefully considered. The present work concerns with design procedure for a micro-fan using NACA(National Advisory Committee for Aeronautics) airfoil series. The generation of fan profiles is carried out automatically by defining related parameters, which is also converted to CAD/CAM data automatically. The optimal parting surface for the mold of micro-fan is also calculated by analyzing the geometric data numerically. As a consequence, the high capacity micro-fan can be developed successfully with a high-quality and an improved efficiency.

  • PDF

Development of Expert System for Process Design of Ball Stud (볼스터스 공정설계 전문가시스템 개발에 관한 연구)

  • 송종호;김홍석;임용택;강종훈;서성렬;정순철;김주현
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.10a
    • /
    • pp.168-171
    • /
    • 1997
  • With the development of computers, CAD(Computer-Aided-Design)/CAM (Computer-Aided-Manufacturing) has been increasingly applied to manufacturing processes to increase productivity, and recently studies of expert systems, a field of Al(Artificial Intelligence), are being carried out to assist process designs. In this study, an expert system for the process design of ball stud was developed. The adequacy of the developed system was examined through comparisons with actual blueprints and verification by experts. The designed process data was saved in dxf file format for transfer to AutoCAD, from which prototype process blueprints were obtained.

  • PDF

Accuracy comparison of 3-unit fixed dental provisional prostheses fabricated by different CAD/CAM manufacturing methods (다양한 CAD/CAM 제조 방식으로 제작한 3본 고정성 임시 치과 보철물의 정확도 비교)

  • Hyuk-Joon Lee;Ha-Bin Lee;Mi-Jun Noh;Ji-Hwan Kim
    • Journal of Technologic Dentistry
    • /
    • v.45 no.2
    • /
    • pp.31-38
    • /
    • 2023
  • Purpose: This in vitro study aimed to compare the trueness of 3-unit fixed dental provisional prostheses (FDPs) fabricated by three different additive manufacturing and subtractive manufacturing procedures. Methods: A reference model with a maxillary left second premolar and the second molar prepped and the first molar missing was scanned for the fabrication of 3-unit FDPs. An anatomically shaped 3-unit FDP was designed on computer-aided design software. 10 FDPs were fabricated by subtractive (MI group) and additive manufacturing (stereolithography: SL group, digital light processing: DL group, liquid crystal displays: LC group) methods, respectively (N=40). All FDPs were scanned and exported to the standard triangulated language file. A three-dimensional analysis program measured the discrepancy of the internal, margin, and pontic base area. As for the comparison among manufacturing procedures, the Kruskal-Wallis test and the Mann-Whitney test with Bonferroni correction were evaluated statistically. Results: Regarding the internal area, the root mean square (RMS) value of the 3-unit FDPs was the lowest in the MI group (31.79±6.39 ㎛) and the highest in the SL group (69.34±29.88 ㎛; p=0.001). In the marginal area, those of the 3-unit FDPs were the lowest in the LC group (25.39±4.36 ㎛) and the highest in the SL group (48.94±18.98 ㎛; p=0.001). In the pontic base area, those of the 3-unit FDPs were the lowest in the LC group (8.72±2.74 ㎛) and the highest in the DL group (20.75±2.03 ㎛; p=0.001). Conclusion: A statistically significant difference was observed in the RMS mean values of all the groups. However, in comparison to the subtractive manufacturing method, all measurement areas of 3-unit FDPs fabricated by three different additive manufacturing methods are within a clinically acceptable range.

Survey study on the Preference of Dental Medical Personnel for Dental CAD/CAM Milling Machines (치과용 CAD/CAM 밀링기에 대한 치과의료종사자들의 선호도 조사)

  • Song, Eun Sung;Kim, Bongju;Lim, Young-Joon;Lee, Jun Jae
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.56 no.3
    • /
    • pp.188-198
    • /
    • 2018
  • Purpose: Recently, according to the development of digital technology, computer aided design/computer aided manufacture (CAD/CAM) system is widely used for fabrication of various dental prostheses in the field of dentistry. This study aims to survey the present state and awareness of CAD/CAM system on domestic dental field, and to supply the advice for the application of the new system. Materials and methods: In this questionnaire survey was conducted for a total of 298 dentists, dental hygienist and dental technicians of the whole country including the dental hospital of Seoul National University for two months from November to December, 2016 through mail. Results: The most important purpose to consider when purchasing a dental CAD/CAM milling machine were the performance of the milling machine (64.43%) and the use of milling machine was the highest with 49.33% of manufacturing for dental prosthesis and customized implant abutment. In addition, more than 60% of respondents answered positively about the purchase of new milling machine if the CAD/CAM milling machine was improved to satisfactory performance. Conclusion: This survey results show that the improved CAD/CAM milling machine would be play an important role in the dental industry in preparation for digitization and the 4th industrial revolution.