• Title/Summary/Keyword: Computer vision technology

Search Result 685, Processing Time 0.023 seconds

Multi-Modal based ViT Model for Video Data Emotion Classification (영상 데이터 감정 분류를 위한 멀티 모달 기반의 ViT 모델)

  • Yerim Kim;Dong-Gyu Lee;Seo-Yeong Ahn;Jee-Hyun Kim
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.01a
    • /
    • pp.9-12
    • /
    • 2023
  • 최근 영상 콘텐츠를 통해 영상물의 메시지뿐 아니라 메시지의 형식을 통해 전달된 감정이 시청하는 사람의 심리 상태에 영향을 주고 있다. 이에 따라, 영상 콘텐츠의 감정을 분류하는 연구가 활발히 진행되고 있고 본 논문에서는 대중적인 영상 스트리밍 플랫폼 중 하나인 유튜브 영상을 7가지의 감정 카테고리로 분류하는 여러 개의 영상 데이터 중 각 영상 데이터에서 오디오와 이미지 데이터를 각각 추출하여 학습에 이용하는 멀티 모달 방식 기반의 영상 감정 분류 모델을 제안한다. 사전 학습된 VGG(Visual Geometry Group)모델과 ViT(Vision Transformer) 모델을 오디오 분류 모델과 이미지 분류 모델에 이용하여 학습하고 본 논문에서 제안하는 병합 방법을 이용하여 병합 후 비교하였다. 본 논문에서는 기존 영상 데이터 감정 분류 방식과 다르게 영상 속에서 화자를 인식하지 않고 감정을 분류하여 최고 48%의 정확도를 얻었다.

  • PDF

Car detection area segmentation using deep learning system

  • Dong-Jin Kwon;Sang-hoon Lee
    • International journal of advanced smart convergence
    • /
    • v.12 no.4
    • /
    • pp.182-189
    • /
    • 2023
  • A recently research, object detection and segmentation have emerged as crucial technologies widely utilized in various fields such as autonomous driving systems, surveillance and image editing. This paper proposes a program that utilizes the QT framework to perform real-time object detection and precise instance segmentation by integrating YOLO(You Only Look Once) and Mask R CNN. This system provides users with a diverse image editing environment, offering features such as selecting specific modes, drawing masks, inspecting detailed image information and employing various image processing techniques, including those based on deep learning. The program advantage the efficiency of YOLO to enable fast and accurate object detection, providing information about bounding boxes. Additionally, it performs precise segmentation using the functionalities of Mask R CNN, allowing users to accurately distinguish and edit objects within images. The QT interface ensures an intuitive and user-friendly environment for program control and enhancing accessibility. Through experiments and evaluations, our proposed system has been demonstrated to be effective in various scenarios. This program provides convenience and powerful image processing and editing capabilities to both beginners and experts, smoothly integrating computer vision technology. This paper contributes to the growth of the computer vision application field and showing the potential to integrate various image processing algorithms on a user-friendly platform

Wavelet Analysis to Real-Time Fabric Defects Detection in Weaving processes

  • Kim, Sung-Shin;Bae, Hyeon;Jung, Jae-Ryong;Vachtsevanos, George J.
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.2 no.1
    • /
    • pp.89-93
    • /
    • 2002
  • This paper introduces a vision-based on-line fabric inspection methodology of woven textile fabrics. Current procedure for determination of fabric defects in the textile industry is performed by human in the off-line stage. The advantage of the on-line inspection system is not only defect detection and identification, but also 벼ality improvement by a feedback control loop to adjust set-points. The proposed inspection system consists of hardware and software components. The hardware components consist of CCD array cameras, a frame grabber and appropriate illumination. The software routines capitalize upon vertical and horizontal scanning algorithms characteristic of a particular deflect. The signal to noise ratio (SNR) calculation based on the results of the wavelet transform is performed to measure any deflects. The defect declaration is carried out employing SNR and scanning methods. Test results from different types of defect and different style of fabric demonstrate the effectiveness of the proposed inspection system.

Precision Evaluation of Expressway Incident Detection Based on Dash Cam (차량 내 영상 센서 기반 고속도로 돌발상황 검지 정밀도 평가)

  • Sanggi Nam;Younshik Chung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.6
    • /
    • pp.114-123
    • /
    • 2023
  • With the development of computer vision technology, video sensors such as CCTV are detecting incident. However, most of the current incident have been detected based on existing fixed imaging equipment. Accordingly, there has been a limit to the detection of incident in shaded areas where the image range of fixed equipment is not reached. With the recent development of edge-computing technology, real-time analysis of mobile image information has become possible. The purpose of this study is to evaluate the possibility of detecting expressway emergencies by introducing computer vision technology to dash cam. To this end, annotation data was constructed based on 4,388 dash cam still frame data collected by the Korea Expressway Corporation and analyzed using the YOLO algorithm. As a result of the analysis, the prediction accuracy of all objects was over 70%, and the precision of traffic accidents was about 85%. In addition, in the case of mAP(mean Average Precision), it was 0.769, and when looking at AP(Average Precision) for each object, traffic accidents were the highest at 0.904, and debris were the lowest at 0.629.

A Study on Vision Based Gesture Recognition Interface Design for Digital TV (동작인식기반 Digital TV인터페이스를 위한 지시동작에 관한 연구)

  • Kim, Hyun-Suk;Hwang, Sung-Won;Moon, Hyun-Jung
    • Archives of design research
    • /
    • v.20 no.3 s.71
    • /
    • pp.257-268
    • /
    • 2007
  • The development of Human Computer Interface has been relied on the development of technology. Mice and keyboards are the most popular HCI devices for personal computing. However, device-based interfaces are quite different from human to human interaction and very artificial. To develop more intuitive interfaces which mimic human to human interface has been a major research topic among HCI researchers and engineers. Also, technology in the TV industry has rapidly developed and the market penetration rate for big size screen TVs has increased rapidly. The HDTV and digital TV broadcasting are being tested. These TV environment changes require changes of Human to TV interface. A gesture recognition-based interface with a computer vision system can replace the remote control-based interface because of its immediacy and intuitiveness. This research focuses on how people use their hands or arms for command gestures. A set of gestures are sampled to control TV set up by focus group interviews and surveys. The result of this paper can be used as a reference to design a computer vision based TV interface.

  • PDF

DEVELOPMENT OF A MACHINE VISION SYSTEM FOR WEED CONTROL USING PRECISION CHEMICAL APPLICATION

  • Lee, Won-Suk;David C. Slaughter;D.Ken Giles
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1996.06c
    • /
    • pp.802-811
    • /
    • 1996
  • Farmers need alternatives for weed control due to the desire to reduce chemicals used in farming. However, conventional mechanical cultivation cannot selectively remove weeds located in the seedline between crop plants and there are no selective heribicides for some crop/weed situations. Since hand labor is costly , an automated weed control system could be feasible. A robotic weed control system can also reduce or eliminate the need for chemicals. Currently no such system exists for removing weeds located in the seedline between crop plants. The goal of this project is to build a real-time , machine vision weed control system that can detect crop and weed locations. remove weeds and thin crop plants. In order to accomplish this objective , a real-time robotic system was developed to identify and locate outdoor plants using machine vision technology, pattern recognition techniques, knowledge-based decision theory, and robotics. The prototype weed control system is composed f a real-time computer vision system, a uniform illumination device, and a precision chemical application system. The prototype system is mounted on the UC Davis Robotic Cultivator , which finds the center of the seedline of crop plants. Field tests showed that the robotic spraying system correctly targeted simulated weeds (metal coins of 2.54 cm diameter) with an average error of 0.78 cm and the standard deviation of 0.62cm.

  • PDF

Development of 3D Holographic Multi-vision applying Wi-Fi Interlocking Technology

  • Park, Myeong-Chul;Kim, Soon-Hee;Hur, Hwa-La
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.6
    • /
    • pp.47-53
    • /
    • 2021
  • In this paper, we propose a multi-vision based hologram display to improve the limited viewing angle problem of a single fan hologram display. Existing single fan type displays have a narrow viewing angle. And when the length of the fan becomes longer, there is a problem of low resolution. Also, it is difficult to change data due to the use of the SD card. So, we want to implement a dedicated app to transmit data via Wi-Fi. In this paper, we designed and implemented a display consisting of 3 REG LED fans. As a result of video transmission using the app, it was confirmed that it can be used for commercial purposes such as advertisements and demonstrations. The results of this study are thought to be of great help in the popularization of multi-vision holograms.

An Electronic Strategy in Innovative Learning Situations and the Design of a Digital Application for Individual Learning to Combat Deviant Intellectual Currents in Light of the Saudi Vision 2030

  • Aisha Bleyhesh, Al-Amri;Khaloud, Zainaddin;Abdulrahman Ahmed, Zahid;Jehan, Sulaimani
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.12
    • /
    • pp.217-228
    • /
    • 2022
  • The study aimed to build an electronic strategy in innovative learning situations for the role of education in combating intellectual currents. A total of 525 Saudi university faculty members and general education teachers were surveyed using two electronic questionnaires. Arithmetic averages and standard deviations, One-way ANOVA, Scheffé's test, Pearson's correlation coefficient, and Cronbach's alpha stability coefficient were used as statistical methods. The study statistically identifies the differences between the study sample at the level of significance (0.05). and the design of a digital application for individual learning to combat deviant intellectual currents to activate them in light of Saudi Vision 2030 by combining the theoretical academic material and turning it into a learning e-game called (crosswords). The game is equipped with hyper media that supports education with entertainment to direct ideas towards the promotion of identity, the development of values towards moderation and the consolidation of intellectual security. Additionally, the learning e-game represents awareness messages in three short films to activate the role of curricula and intellectual awareness centers to apply realistically, innovatively, and effectively.

POSITION RECOGNITION AND QUALITY EVALUATION OF TOBACCO LEAVES VIA COLOR COMPUTER VISION

  • Lee, C. H.;H. Hwang
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11c
    • /
    • pp.569-577
    • /
    • 2000
  • The position of tobacco leaves is affluence to the quality. To evaluate its quality, sample leaves was collected according to the position of attachment. In Korea, the position was divided into four classes such as high, middle, low and inside positioned leaves. Until now, the grade of standard sample was determined by human expert from korea ginseng and tobacco company. Many research were done by the chemical and spectrum analysis using NIR and computer vision. The grade of tobacco leaves mainly classified into 5 grades according to the attached position and its chemical composition. In high and low positioned leaves shows a low level grade under grade 3. Generally, inside and medium positioned leaf has a high level grade. This is the basic research to develop a real time tobacco leaves grading system combined with portable NIR spectrum analysis system. However, this research just deals with position recognition and grading using the color machine vision. The RGB color information was converted to HSI image format and the sample was all investigated using the bundle of tobacco leaves. Quality grade and position recognition was performed through well known general error back propagation neural network. Finally, the relationship about attached leaf position and its grade was analyzed.

  • PDF

Extraordinary State Classification of Grinding Wheel Surface Based on Gray-level Run Lengths (명암도 작용 길이에 따른 연삭 숫돌면의 이상 현상 분류)

  • 유은이;김광래
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.3
    • /
    • pp.24-29
    • /
    • 2004
  • The grinding process plays a key role which decides the quality of a product finally. But the grinding process is very irregular, so it is very difficult to analyse the process accurately. Therefore it is very important in the aspect of precision and automation to reduce the idle time and to decide the proper dressing time by watching. In this study, we choose the method which can be observed directly by using of computer vision and then apply pattern classification technique to the method of measuring the wheel surface. Pattern classification technique is proper to analyse complicated surface image. We observe the change of the wheel surface by using of the gray level run lengths which are representative in this technique.