• Title/Summary/Keyword: Computer tomography

Search Result 424, Processing Time 0.032 seconds

Full mouth rehabilitation with Implant-Guided Surgery and Fixed prosthesis (Implant-Guided Surgery를 이용한 고정성 임플란트 보철물의 전악 수복 증례)

  • Kim, Seong-Mo;Park, Jin-Hong;Ryu, Jae-Jun;Shin, Sang Wan;Lee, Jeong-Yol
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.56 no.2
    • /
    • pp.126-133
    • /
    • 2018
  • The development of cone beam computerized tomography (CBCT) allows three-dimensional analysis of the patient's anatomy. The surgical guide is a combination of CBCT, computer-aided design/computer-aided manufacturing (CAD/CAM) and implant diagnostics software, which allows well planned prostheses design and ideal implant placement. Guided surgery minimizes possible anatomical damage and allows for more reproducible treatment planning. In this case, the operation time was shortened by using a surgical guide for multiple implants placement in a fully edentulous patient. Immediate loading were performed more easily using preliminary preparation of provisional prosthesis. The patient was satisfied with improved esthetics and chewing function.

Statistical Techniques based Computer-aided Diagnosis (CAD) using Texture Feature Analysis: Applied of Cerebral Infarction in Computed Tomography (CT) Images

  • Lee, Jaeseung;Im, Inchul;Yu, Yunsik;Park, Hyonghu;Kwak, Byungjoon
    • Biomedical Science Letters
    • /
    • v.18 no.4
    • /
    • pp.399-405
    • /
    • 2012
  • The brain is the body's most organized and controlled organ, and it governs various psychological and mental functions. A brain abnormality could greatly affect one's physical and mental abilities, and consequently one's social life. Brain disorders can be broadly categorized into three main afflictions: stroke, brain tumor, and dementia. Among these, stroke is a common disease that occurs owing to a disorder in blood flow, and it is accompanied by a sudden loss of consciousness and motor paralysis. The main types of strokes are infarction and hemorrhage. The exact diagnosis and early treatment of an infarction are very important for the patient's prognosis and for the determination of the treatment direction. In this study, texture features were analyzed in order to develop a prototype auto-diagnostic system for infarction using computer auto-diagnostic software. The analysis results indicate that of the six parameters measured, the average brightness, average contrast, flatness, and uniformity show a high cognition rate whereas the degree of skewness and entropy show a low cognition rate. On the basis of these results, it was suggested that a digital CT image obtained using the computer auto-diagnostic software can be used to provide valuable information for general CT image auto-detection and diagnosis for pre-reading. This system is highly advantageous because it can achieve early diagnosis of the disease and it can be used as supplementary data in image reading. Further, it is expected to enable accurate medical image detection and reduced diagnostic time in final-reading.

Development of pre-procedure virtual simulation for challenging interventional procedures: an experimental study with clinical application

  • Seong, Hyunyoung;Yun, Daehun;Yoon, Kyung Seob;Kwak, Ji Soo;Koh, Jae Chul
    • The Korean Journal of Pain
    • /
    • v.35 no.4
    • /
    • pp.403-412
    • /
    • 2022
  • Background: Most pain management techniques for challenging procedures are still performed under the guidance of the C-arm fluoroscope although it is sometimes difficult for even experienced clinicians to understand the modified three-dimensional anatomy as a two-dimensional X-ray image. To overcome these difficulties, the development of a virtual simulator may be helpful. Therefore, in this study, the authors developed a virtual simulator and presented its clinical application cases. Methods: We developed a computer program to simulate the actual environment of the procedure. Computed tomography (CT) Digital Imaging and Communications in Medicine (DICOM) data were used for the simulations. Virtual needle placement was simulated at the most appropriate position for a successful block. Using a virtual C-arm, the authors searched for the position of the C-arm at which the needle was visualized as a point. The positional relationships between the anatomy of the patient and the needle were identified. Results: For the simulations, the CT DICOM data of patients who visited the outpatient clinic was used. When the patients revisited the clinic, images similar to the simulated images were obtained by manipulating the C-arm. Transforaminal epidural injection, which was difficult to perform due to severe spinal deformity, and the challenging procedures of the superior hypogastric plexus block and Gasserian ganglion block, were successfully performed with the help of the simulation. Conclusions: We created a pre-procedural virtual simulation and demonstrated its successful application in patients who are expected to undergo challenging procedures.

Image Reconstruction using Simulated Annealing Algorithm in EIT

  • Kim Ho-Chan;Boo Chang-Jin;Lee Yoon-Joon
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.2
    • /
    • pp.211-216
    • /
    • 2005
  • In electrical impedance tomography (EIT), various image reconstruction algorithms have been used in order to compute the internal resistivity distribution of the unknown object with its electric potential data at the boundary. Mathematically, the EIT image reconstruction algorithm is a nonlinear ill-posed inverse problem. This paper presents a simulated annealing technique as a statistical reconstruction algorithm for the solution of the static EIT inverse problem. Computer simulations with 32 channels synthetic data show that the spatial resolution of reconstructed images by the proposed scheme is improved as compared to that of the mNR algorithm at the expense of increased computational burden.

Analysis of Density Distribution for Hydrogen Flow Using Three-dimensional Digital Speckle Tomography (3차원 디지털 스페클 토모그래피를 이용한 수소 유동의 밀도 분포 분석)

  • Ahn, S.S.;Ko, H.S.
    • Journal of Hydrogen and New Energy
    • /
    • v.16 no.3
    • /
    • pp.253-261
    • /
    • 2005
  • 석유 연료 고갈 해결 및 온실 효과 가스 배풀 저감을 위한 방안으로 제시되는 수소는 다양한 에너지 저장체로 사용되어 질 수 있으나 안전성에 대한 연구가 요구되어진다. 따라서, 일반적인 저장 형태인 고압 저장 탱크에서 누출이 되었을 경우 분사되는 수소의 거동에 대한 연구가 이루어져야하며 이를 바탕으로 한 보완책이 제시되어야 한다. 이번 연구에서는 누설 시 확산되는 수소의 밀도를 실제 거동과 유사한 3차원 컴퓨터 영상장으로 합성한 후 ART(algebraic reconstruction technique) 및 MART(multiplicative ART)를 기반으로 한 3차원 디지털 스페클 토모그래피 기법을 개발하여 재건하고 분석하였다.

A STATIC IMAGE RECONSTRUCTION ALGORITHM IN ELECTRICAL IMPEDANCE TOMOGRAPHY (임피던스 단층촬영기의 정적 영상 복원 알고리즘)

  • Woo, Eung-Je;Webster, John G.;Tompkins, Willis J.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1991 no.05
    • /
    • pp.5-7
    • /
    • 1991
  • We have developed an efficient and robust image reconstruction algorithm for static impedance imaging. This improved Newton-Raphson method produced more accurate images by reducing the undesirable effects of the ill-conditioned Hessian matrix. We found that our electrical impedance tomography (EIT) system could produce two-dimensional static images from a physical phantom with 7% spatial resolution at the center and 5% at the periphery. Static EIT image reconstruction requires a large amount of computation. In order to overcome the limitations on reducing the computation time by algorithmic approaches, we implemented the improved Newton-Raphson algorithm on a parallel computer system and showed that the parallel computation could reduce the computation time from hours to minutes.

  • PDF

Planning and Evaluation of Orthognathic surgery using CBCT imaging (임상가를 위한 특집 3 - CBCT를 이용한 악교정수술 계획 수립 및 평가)

  • Choi, Jeong-Ho
    • The Journal of the Korean dental association
    • /
    • v.52 no.1
    • /
    • pp.27-36
    • /
    • 2014
  • The introduction of cone-beam computed tomography(CBCT) and computer software in dentistry has allowed orthodontists and maxillofacial surgeons to provide more accurate diagnosis and treatment. In this article, a facial asymmetry patient who had orthodontic treatment combined with orthognathic surgery using CBCT imaging is introduced and the way how CBCT imaging could be applied in clinical orthodontics and orthognathic surgery is explained. Also, evaluation of treatment outcomes using CBCT is suggested. More accurate, predictable and efficient surgical orthodontic planning and treatment are expected in the near future through cutting edge medical imaging including CBCT and CAD/CAM technologies.

EIT imaging with the projection filter

  • Kim, Bong-Seok;Kim, Min-Chan;Kim, Sin;Kim, Kyung-Youn
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.396-401
    • /
    • 2003
  • Electrical impedance tomography(EIT) is a relatively new imaging modality in which the internal impedivity distribution is reconstructed based on the known sets of injected currents and measured voltages on the surface of the object. In this paper, an effective dynamic EIT imaging scheme is presented based on the projection filtering to estimate the unknown resistivity distribution. In particular, pre-integration (pre-grouping) technique is employed to stabilize the inverse algorithm. We carried out computer simulations with synthetic data to illustrate the reconstruction performance of the proposed algorithm.

  • PDF

EIT Image Reconstruction by Simultaneous Perturbation Method

  • Kim, Ho-Chan;Boo, Chang-Jin;Lee, Yoon-Joon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.159-164
    • /
    • 2004
  • In electrical impedance tomography (EIT), various image reconstruction algorithms have been used in order to compute the internal resistivity distribution of the unknown object with its electric potential data at the boundary. Mathematically the EIT image reconstruction algorithm is a nonlinear ill-posed inverse problem. This paper presents a simultaneous perturbation method as an image reconstruction algorithm for the solution of the static EIT inverse problem. Computer simulations with the 32 channels synthetic data show that the spatial resolution of reconstructed images by the proposed scheme is improved as compared to that of the mNR algorithm at the expense of increased computational burden.

  • PDF

Development of Combined Optical System for Analysis of Impinging Butane Flame (충돌 부탄 화염의 분석을 위한 복합 광학 계측 기법 개발)

  • Baek, Seung-Hwan;Ahn, Seong-Soo;Ko, Han-Seo
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.69-73
    • /
    • 2005
  • Three-dimensional density distributions of an impinging and eccentric flame have been analyzed numerically and experimentally by a combined optical system with a digital speckle tomography. The flame has been ignited by premixed butane/air from air holes and impinged vertically against a plate located at the upper side of tile burner nozzle. In order to compare with experimental data, computer synthesized phantoms of impinging and eccentric flames have been made and reconstructed by a developed three-dimensional multiplicative algebraic reconstruction technique (MART). A new scanning technique has been developed for the analysis of speckle displacements to investigate wall jet regions of the impinging flame including sharp variation of the flow direction and pressure gradient. The reconstructed temperatures have been compared with a temperature photography by an infrared camera and results of numerical analysis using a finite-element method.

  • PDF