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Image Reconstruction using Simulated Annealing Algorithm in EIT

Ho-Chan Kim, Chang-Jin Boo, and Yoon-Joon Lee

Abstract: In electrical impedance tomography (EIT), various image reconstruction algorithms
have been used in order to compute the internal resistivity distribution of the unknown object
with its electric potential data at the boundary. Mathematically, the EIT image reconstruction
algorithm is a nonlinear ill-posed inverse problem. This paper presents a simulated annealing
technique as a statistical reconstruction algorithm for the solution of the static EIT inverse
problem. Computer simulations with 32 channels synthetic data show that the spatial resolution
of reconstructed images by the proposed scheme is improved as compared to that of the mNR
algorithm at the expense of increased computational burden.

Keywords: Electrical impedance tomography, finite element method, inverse problem,

simulated annealing.

1. INTRODUCTION

Electrical impedance tomography (EIT) plays an
important role as an innovative monitoring tool for
engineering applications such as biomedical imaging
and process tomography due to its relatively cheap
electronic hardware requirements and nonintrusive
measurement property [1-3]. In EIT, different current
patterns are injected to the unknown object through
electrodes and the corresponding voltages are
measured on its boundary surface. The physical
relationship between inner resistivity (or conductivity)
and boundary surface voltage is the generalized
Laplace equation with appropriate boundary
conditions. As such, it is impossible to obtain the
closed-form solution for the resistivity distribution.
Hence, the internal resistivity distribution of the
unknown object is computed using the boundary
voltage data based on various reconstruction
algorithms.

Yorkey et al. [4] developed a modified Newton-
Raphson (mNR) algorithm for a static EIT image
reconstruction and compared it with other existing
algorithms such as the backprojection, perturbation

Manuscript received October 28, 2004; accepted February
22, 2005. Recommended by Editorial Board member Sun
Kook Yoo under the direction of Editor Jin Bae Park. This
work was supported by the Nuclear Academic Research
Program by the Ministry of Science and Technology (MOST).

Ho-Chan Kim and Chang-Jin Boo are with the Department
of Electrical Engineering, Cheju National University, 66
Jejudaehakno, Jeju-si, Jeju-do 690-756, Korea (e-mails:
{hckim, boo1004}@cheju.ac.kr).

Yoon-Joon Lee is with the Department of Nuclear and
Energy Engineering, Cheju National University, 66
Jejudaehakno, Jeju-si, Jeju-do 690-756, Korea (e-mail:
leeyj@cheju.ac kr).

and double constraints methods. They concluded that
the mNR reveals relatively good performance in terms
of convergence rate and residual error compared to
those of other methods. And yet, in real situations, the
mNR method often fails to obtain satisfactory images
from physical data due to large modeling error, poor
signal to noise ratios (SNRs) and ill-conditioned (ill-
posed) characteristics. That is, the ratio between the
maximum and minimum eigenvalues of the
information matrix (or Hessian matrix) is very large.
In particular, the ill-conditioning of the information
matrix results in an inaccurate matrix inverse so that
the resistivity update process is very sensitive to the
modeling and measurement errors.

The major difficulties in impedance imaging are in
the nonlinearity of the problem itself and the poor
sensitivity of the boundary voltages to the change of
resistivity deep within the domain. Several researchers
have suggested various element or mesh grouping
methods where they force all meshes belonging to
certain groups to have the same resistivity values [5,6].

Simulated annealing (SA) [7] is an optimization
technique inspired from Monte Carlo methods in
statistical mechanics. It attempts to avoid local optima
by probabilistically taking non-locally optimal steps
in the search space. The probability of taking such
steps decreases with the “temperature” of the system,
which in tum decreases with time. SA is able to deal
with evaluation functions with rather arbitrary degrees
of nonlinearities, discontinuities and stochasticity, and
can process quite arbitrary boundary conditions and
constraints imposed on these evaluation functions
[7.8]. It has been shown that with a “large enough”
initial temperature and a proper temperature schedule,
SA guarantees a globally optimal solution [9].

In this paper, we will discuss the image
reconstruction in EIT based on combining SA and
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mNR algorithms. We have divided the procedure for
obtaining the internal resistivity distribution into two
steps. In the first step, each mesh is classified into
three mesh groups: target, background, and temporary
groups. Following a few iterations of the mNR
algorithm, an absolute value of meshes cannot be
determined, but some useful information on the target
images can be given. So, we use the mNR algorithm
to determine the resistivity of meshes and rearrange
the resistivity values of meshes by sorting them in
ascending order. Then the boundary location between
regions can be roughly decided and the mesh can be
determined in relation to the target, background, or
undetermined temporary group. In the second step, the
values of these resistivities are determined using SA
algorithm. This two-step approach allows us to better
constrain the inverse problem and subsequently
achieve a higher spatial resolution.

2. IMAGE RECONSTRUCTION USING
SIMULATED ANNEALING
ALGORITHM IN EIT

The numerical algorithm used to convert the
electrical measurements at the boundary to a
resistivity  distribution is described here. The
algorithm consists of iteratively solving the forward
problem and updating the resistivity distribution as
dictated by the formulation of the inverse problem.
The forward problem of EIT calculates boundary
potentials with the given electrical resistivity
distribution, and the inverse problem of EIT takes
potential measurements at the boundary to update the
resistivity distribution.

2.1. The forward problem
When electrical currents [;(/=1,---,L) are injected

into the object Qe R? through  electrodes
¢(l=1,--,L) attached on the boundary 6Q and the
resistivity distribution p(x,y) is known over Q,
the corresponding induced electrical potential u(x, y)

can be determined uniquely from the generalized
Laplace equation with Neumann boundary conditions.
The complete electrode model takes into account both
the shunting effect of the electrode and the contact
impedances between the electrodes and the object.
The equations of the complete electrode model are

V-(p"'Vu)=0 in Q, (1)

[ o &as=1, =11,
&
7 on Q)

L
p‘]%=0 on dQ\ (J g,
on I=1

where z; is the effective contact impedance between
the 1™ electrode and the object, U ; is the measured

potential at the /™ electrode and # is the outward unit
normal. In addition, we have the following two
conditions for the injected currents and measured
voltages by taking into account the conservation of
electrical charge and appropriate selection of ground
electrode, respectively.

L
Z]] =0, (3)
=1
L
=1

The computation of the potential u(x,y) for the
given resistivity distribution p(x,y) and boundary
condition /; is called the forward problem. The

numerical solution for the forward problem can be
obtained using the finite element method (FEM). In
the FEM, the object area is discretized into small
elements having a node at each corner. It is assumed
that the resistivity distribution is constant within an
element. The potential at each node is calculated by
discretizing (1) into YU, =1,, where U, is the
vector of voltages at the FEM nodes and the

electrodes, [, is the vector of injected current

patterns, and the matrix ¥ is a functions of the
unknown resistivities.

2.2. The inverse problem

The inverse problem, also known as the image
reconstruction, consists in reconstructing the
resistivity  distribution  p(x,y) from potential

differences measured on the boundary of the object.
Ideally, knowing the potential of the whole boundary
makes the correspondence between the resistivity
distribution and the potential biunique. The relatively
simple situation depicted so far does not hold exactly
in the real world. The methods used for solving the
EIT problem search for an approximate solution, i.e.,
for a resistivity distribution minimizing some sort of
residual involving the measured and calculated
potential values. From a mathematical point of view,
the EIT inverse problem consists in finding the
coordinates of a point in a M-dimensional hyperspace,
where M is the number of discrete elements whose
union constitutes the tomographic section under
consideration. In the past, several EIT image
reconstruction algorithms for the current injection
method have been developed by various authors. A
review of these methods is given in [10]. To
reconstruct the resistivity distribution inside the object,
we have to solve the nonlinear ill-posed inverse
problem. Regularization techniques are needed to
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weaken the ill-posedness and to obtain stable
solutions.

The Generalized Tikhonov regularized version of
the EIT inverse problem can be written in the form [3]

Y(p)=mn{|U-V(p) | +A[|Rp}, &)

where p € R is the resistivity distribution. V(p)e R
is the vector of voltages obtained from the model with
known p, U € R are the measured voltages and R
and 24 are the regularization matrix and the
regularization parameter, respectively. There are many
approaches in the literature [11-14] to determine R
and A, but the usual choice is to fix R=1 with the
identity matrix and to adjust 1 empirically.
Minimizing the objective function W(p) gives an
equation for the update of the resistivity vector

Pint = Px + AP
Appay = (Hy + A I (U =V (o) = Apihs

where the partial derivative of W with respectto p

(6)

has been approximated by a Taylor series expansion
around p; . The Jacobian J, is a matrix composed

of the derivative of the vector of predicted potentials
with respect to the unknown resistivities. The
Jacobian is derived from the finite element

formulation given by .J, _¥ . The Hessian H,

Pr
is the second derivative of the predicted potentials
with respect to the resistivity and is approximated as
the square of the Jacobian for computational
efficiency. Since the objective function W(p) is

multimodal (i.e., it presents several local minima), the
inversion procedure does not always converge to the
true solution. The reconstruction algorithms are likely
to be trapped in a local minimum and sometimes the
best solution of a static EIT problem is rather
unsatisfactory.

This paper attempts to apply SA to EIT image
reconstruction. Two characteristics of SA algorithms
appear to be of value in EIT reconstruction; no
evaluation of function derivatives is needed and no
assumption on function continuity needs to be made.
The preceding considerations suggest the viability of
employing SA’s for the solution of the EIT problem,
according to the procedure described in the following
section.

2.3. The SA algorithm approach to EIT

In some applications like visualization of two-
component systems, we may assume that there are
only two different representative resistivity values;
one resistivity value for the background and the other
for the target. Here, the target need not be a single

segment. It may be composed of multiple segments of
the same resistivity value.

In this paper, we will discuss the image
reconstruction in EIT using a two-step approach. We
have divided the procedure for obtaining the internal
resistivity distribution into two steps. In the first step,
we adopted a mNR method as a basic image
reconstruction algorithm. After a few initial mNR
iterations performed without any grouping, we
classified each mesh into one of three mesh groups:
BackGroup (or TargetGroup) is the mesh group with
the resistivity value of the background (or target).
TempGroup is the group of meshes neither in
BackGroup nor in TargetGroup. All meshes in
BackGroup and in TargetGroup are forced to have the
same but unknown resistivity value ( gy, and o, ),
respectively. However, all meshes in TempGroup can

have different resistivity values ( premp ;5 =1, .1-2).

The SA reconstruction algorithm for EIT can be
formulated as follows. We will iteratively reconstruct
an image that fits best the measured voltages U, at
the [ th electrode. To do so, at each iteration we will
calculate the pseudo voltages V;(p) that correspond
to the present state of the reconstructed image. We
assume that, by minimizing the difference between the
measured voltages and the pseudo voltages, the
reconstructed image will converge towards the
sought-after original image. Therefore, we chose as
cost function the following function of the relative
difference between the computed and measured
potentials on the object boundary

M, v 2
E(p)=Mi;[——U’ UV_’(” )] : ™

1

where M, is the total number of independent
measurement.
SA starts with an initial schedule p; and

generates another schedule p,,,, = oy +Ap within a
neighborhood. Let E(p,) and E(p,,, ) denote the

energy (or cost) of schedules p, and p,.,
respectively, which are calculated via objective
function. In a  minimization problem if
AE =E(p,..)— E(p)<0 (ie., p,,, 1s better), then
our new move (schedule) is accepted; otherwise, it is
accepted with a probability of P,(7)

. AE

F()= exp[———] , ®
T,

where T, is the temperature at the k” iteration.

Note that as Tx decreases, the lower the probability to
accept worse schedules. Ty is controlled by the
cooling schedule function as given by (9)
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Tk =aTk_1, (9)

where « €(0,1) is the temperature decay rate. The

SA can be described with the following pseudo code
using the notation.

SA algorithm in pseudo-code
Start

Select an initial resistivity distribution g,

Select an initial temperature 7T

Select temperature reduction function
Select number of iterations for each temperature
Select number of temperatures
Repeat
Set Temperature Counter =0
Repeat
Set Iteration Counter = 0

Generate solution p,.., P, a neighborhood

of py
Calculate AE =E(p,..)—E(pr)
If AE<O
Then .1 = Pyew
Else

Generate random value U uniformly in (0,1)
If U<exp(—-AE/T;) then py.1=puoy

Iteration Counter = Iteration Counter +1
Until number of iterations
Counter Temperature = Counter Temperature +1
Temperature 7, =aT,

Until number of temperatures

(stopping criterion, number of temperatures is
satisfied)

Py 1s the approximation to the optimal solution

End

SA requests that generic and problem specific
decisions have to be made concerning algorithm
parameters. The generic decisions involve the cooling
schedule: initial temperature, final temperature and
temperature reduction function. The problem-specific
decisions include how to develop an initial solution
and how to generate good neighbors to ‘the current
solution.

3. COMUTER SIMULATION

The proposed algorithm has been tested by
comparing its results for numerical simulations with
those obtained by the mNR method. For the current
injection the trigonometric current patterns were used.
For the forward calculations, the domain Q was a
unit disc and the mesh of 3104 triangular elements
(M=3104) with 1681 nodes (N=1681) and 32 channels
(L=32) was used as shown in Fig. 1(a). A different

mesh system with 776 elements (M=776) and 453
nodes (N=453) was adopted for the inverse
calculations as shown in Fig. 1(b). In this paper, under
the assumption that the resistivity varies only in the
radial direction within a cylindrical coordinate system
[14], the results of the two inverse problem methods
can be easily compared. The resistivity profile given
to the finite element inverse solver varies from the
center to the boundary of an object and is divided into
9 radial elements ( o, -+, pg ) in Fig. 1(b).

Reasonable efforts were made to tune the SA
parameters to enhance the performance of the
algorithm. Standard stepwise temperature decay
method is used. The initial temperature 7y is 1 and

the decay factor a is 0.8. Stopping criteria is based
on the number of temperatures. The number of
temperatures used is 50.

Resolution of the method is determined by a
number of variables including resistivity contrast and
distribution, position within the domain, and even
current patterns. The ability to positively distinguish
between two similar resistivity distributions also
depends upon the precision of the voltage
measurements. These factors necessitate caution when
designing an experiment and interpreting results.
Therefore, to verify the appropriateness of EIT for this

application, a computational experiment was
conducted.
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Fig. 1. Finite element mesh used in the calculation
(The resistivities of the elements within an
annular ring are identical.) (a) mesh for
forward solver, (b} mesh for inverse solver.
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Fig. 2. True resistivities (solid line) and computed
resistivities using mNR (dash line) and SA
(dotted line).

Synthetic boundary potentials were computed for
idealized resistivity distributions using the finite
element method described earlier. The boundary
potentials were then used for inversion and the results
were compared to the original resistivity profiles. The
resistivity profile appearing in Fig. 2 contains two
large discontinuities in the original resistivity
distribution. The present example is a severe test in
EIT problems because there are large step changes at
r/R=0.56 and 0.81 preventing electric currents from
going into the center region.

We started a few mNR iterations without any mesh
grouping with a homogeneous initial guess. In Table 1,
we see that the mNR algorithm may roughly estimate
the given true resistivities. Since the mNR have a
large error at the boundary of target and background
in Fig. 2, we cannot obtain reconstructed images of
high spatial resolution. This kind of poor convergence
is a very typical problem in NR-type algorithms.

However, we can significantly improve the mNR’s
poor convergence by adopting the proposed SA via a
two-step approach as follows. In the first step, we
adopted a mNR method as a basic image
reconstruction algorithm. After a few initial mNR
iterations performed without any grouping, we
rearrange the resistivity values of meshes by sorting
them in ascending order. Then the boundary location
between regions can be roughly decided and the mesh
can be determined to the target, background, or
undetermined temporary group. In this paper, from
Table 1, 2 meshes ( ps5,0¢ ) and 5 meshes

( P2:P3:P7. 98,9 ) among 9 may be grouped to
TargetGroup ( p,,, ) and BackGroup ( o, )
respectively. The remainders of meshes ( g, p4) are

grouped to TempGroup. Hence, the number of
unknowns is reduced to 4.

In the second step, after mesh grouping, we will
determine the values of these resistivities using SA
algorithm. The SA solves the EIT problem, searching

for the resistivities (o, 04, Piy and pp, ) and

Table 1. True resistivities and computed resistivities
using mNR and SA.

PP P3| Pa|Ps | Ps | P P[P
Real | 0.5]05]05/05/0.6;0.6]0.5(05]0.5
mNR|.521/.495|.488|.537|.598.564|.496{.502|.500
SA [.500].500{.500{.500{.600].600|.500].500|.500

minimizing the reconstruction error. In this case, we
will use pp e (or P, ) as the minimum (or

maximum) values of the unknown resistivity
distribution. The computed resistivities in SA are
constrained between the minimum and maximum
values. The initial values of unknown p,,. and

Prack are the average resistivity values of meshes in

the BackGroup and TargetGroup, respectively. From
Fig. 2 and Table 1, the inverted profile using SA
matches the original profile very well near the wall at
r/R =1.0 as well as the center at r/R =0.0.
Furthermore, the SA reconstruction is practically
perfect for the jump of resistivity at »/R=0.56 and 0.81

4. CONCLUSION

In this paper, an EIT image reconstruction method
based on SA via a two-step approach was presented to
improve the spatial resolution. A technique based on
SA algorithm with the knowledge of mNR was
developed for the solution of the EIT inverse problem.
Although SA is expensive in terms of computing time
and resources, which is a weakness of the method that
renders it presently unsuitable for real-time
tomographic applications, the exploitation of a priori
knowledge will produce very good reconstructions.
Further extensions include an EIT image
reconstruction to multi-resistivity value problems.
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