• 제목/요약/키워드: Computer optimization

검색결과 2,415건 처리시간 0.026초

STEP을 이용한 구조해석 및 최적설계 정보교환 (STEP-Based Information Exchange for Structural Analysis and Optimization)

  • 백주환;민승재
    • 한국CDE학회논문집
    • /
    • 제12권1호
    • /
    • pp.8-14
    • /
    • 2007
  • In the product design process computer-aided engineering and optimization tolls are widely utilized in order to reduce the total development time and cost. Since several simulation tools are involved in the process, information losses, omissions, or errors are common and the importance of seamless information exchange among the tools has been increased. In this work, ISO STEP standards are adopted to represent the neutral format for structural analysis and optimization. The schema of AP209 defined the information of finite element analysis is used and the new schema is proposed to describe the information of structural optimization based on the STEP methodology. The schema is implemented by EXPRESS, information modeling language, and ST-Developer is employed to generate C++ classes and STEP Rose Library by using the schema denoted. To substantiate the proposed approach, the information access interfaces of the finite element modeling software (FEMAP), structural optimization software(GENESIS) and in-house topology optimization program are developed. Examples are shown to validate the information exchange of finite element analysis and structural optimization using STEP standards.

Optimized Polynomial Neural Network Classifier Designed with the Aid of Space Search Simultaneous Tuning Strategy and Data Preprocessing Techniques

  • Huang, Wei;Oh, Sung-Kwun
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권2호
    • /
    • pp.911-917
    • /
    • 2017
  • There are generally three folds when developing neural network classifiers. They are as follows: 1) discriminant function; 2) lots of parameters in the design of classifier; and 3) high dimensional training data. Along with this viewpoint, we propose space search optimized polynomial neural network classifier (PNNC) with the aid of data preprocessing technique and simultaneous tuning strategy, which is a balance optimization strategy used in the design of PNNC when running space search optimization. Unlike the conventional probabilistic neural network classifier, the proposed neural network classifier adopts two type of polynomials for developing discriminant functions. The overall optimization of PNNC is realized with the aid of so-called structure optimization and parameter optimization with the use of simultaneous tuning strategy. Space search optimization algorithm is considered as a optimize vehicle to help the implement both structure and parameter optimization in the construction of PNNC. Furthermore, principal component analysis and linear discriminate analysis are selected as the data preprocessing techniques for PNNC. Experimental results show that the proposed neural network classifier obtains better performance in comparison with some other well-known classifiers in terms of accuracy classification rate.

구름 베어링 설계를 위한 유전 알고리듬 기반 조합형 최적설계 방법 (Genetic-Based Combinatorial Optimization Method for Design of Rolling Element Bearing)

  • 윤기찬;최동훈;박창남
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2001년도 제34회 추계학술대회 개최
    • /
    • pp.166-171
    • /
    • 2001
  • In order to improve the efficiency of the design process and the quality of the resulting design for the application-based exclusive rolling element bearings, this study propose design methodologies by using a genetic-based combinatorial optimization. By the presence of discrete variables such as the number of rolling element (standard component) and by the engineering point of views, the design problem of the rolling element bearing can be characterized by the combinatorial optimization problem as a fully discrete optimization. A genetic algorithm is used to efficiently find a set of the optimum discrete design values from the pre-defined variable sets. To effectively deal with the design constraints and the multi-objective problem, a ranking penalty method is suggested for constructing a fitness function in the genetic-based combinatorial optimization. To evaluate the proposed design method, a robust performance analyzer of ball bearing based on quasi-static analysis is developed and the computer program is applied to some design problems, 1) maximize fatigue life, 2) maximize stiffness, 3) maximize fatigue life and stiffness, of a angular contact ball bearing. Optimum design results are demonstrate the effectiveness of the design method suggested in this study. It believed that the proposed methodologies can be effectively applied to other multi-objective discrete optimization problems.

  • PDF

Optimization of a Composite Laminated Structure by Network-Based Genetic Algorithm

  • Park, Jung-Sun;Song, Seok-Bong
    • Journal of Mechanical Science and Technology
    • /
    • 제16권8호
    • /
    • pp.1033-1038
    • /
    • 2002
  • Genetic alsorithm (GA) , compared to the gradient-based optimization, has advantages of convergence to a global optimized solution. The genetic algorithm requires so many number of analyses that may cause high computational cost for genetic search. This paper proposes a personal computer network programming based on TCP/IP protocol and client-server model using socket, to improve processing speed of the genetic algorithm for optimization of composite laminated structures. By distributed processing for the generated population, improvement in processing speed has been obtained. Consequently, usage of network-based genetic algorithm with the faster network communication speed will be a very valuable tool for the discrete optimization of large scale and complex structures requiring high computational cost.

PID Control Design with Exhaustive Dynamic Encoding Algorithm for Searches (eDEAS)

  • Kim, Jong-Wook;Kim, Sang-Woo
    • International Journal of Control, Automation, and Systems
    • /
    • 제5권6호
    • /
    • pp.691-700
    • /
    • 2007
  • This paper proposes a simple but effective design method of PID control using a numerical optimization method. In order to achieve both stability and performance, gain and phase margins and performance indices of step response directly compose of the cost function. Hence, the proposed approach is a multiobjective optimization problem. The main effectiveness of this approach results from the strong capability of the used optimization method. A one-dimensional example concerning gain margin illustrates the practical applicability of the optimization method. The present approach has many degrees of freedom in controller design by only adjusting related weight constants. The attained PID controller is compared with Wang#s and Ho#s methods, IAE, and ISE for a high-order process, and the simulation result for various design targets shows that the proposed approach achieves desired time-domain performance with a guarantee of frequency-domain stability.

직교배열과 분산분석법을 이용한 사출금형 냉각시스템 파라미터의 시뮬레이션 최적설계 (A Simulation-based Optimization of Design Parameters for Cooling System of Injection Mold by using ANOVA with Orthogonal Array)

  • 박종천;신승민
    • 한국기계가공학회지
    • /
    • 제11권5호
    • /
    • pp.121-128
    • /
    • 2012
  • The optimization of cooling system parameters for designing injection mold is very important to acquire the highest part quality. In this paper, the integration of computer simulations of injection molding and Analysis of Variance(ANOVA) with orthogonal array was used as a design tool to optimize the cooling system parameters aimed at minimizing the part warpage. The design optimizer was applied to find the optimum levels of cooling system parameters for a dustpan. This optimization resulted in more uniform temperature distribution over the part and significant reduction of a part warpage, showing the capability of present method as an effective design tool. The whole optimization process was performed systematically in a proper number of cooling simulations. The design optimizer can be utilized effectively in the industry practice for designing mold cooling system with less cost and time.

Topology Optimization of Continuum Structures Using a Nodal Volume Fraction Method

  • Lee, Jin-Sik;Lim, O-Kaung
    • Computational Structural Engineering : An International Journal
    • /
    • 제1권1호
    • /
    • pp.21-29
    • /
    • 2001
  • The general topology optimization can be considered as optimal material distribution. Such an approach can be unstable, unless composite materials are introduced. In this research, a nodal volume fraction method is used to obtain the optimum topology of continuum structures. This method is conducted from a composite material model composed of isotropic matter and spherical void. Because the appearance of the chessboard patterns makes the interpretation of the optimal material layout very difficult, this method contains a chessboard prevention strategy. In this research, several topology optimization problems are presented to demonstrate the validity of the present method and the recursive quadratic programming algorithm is used to solve the topology optimization problems.

  • PDF

Optimum design of braced steel frames via teaching learning based optimization

  • Artar, Musa
    • Steel and Composite Structures
    • /
    • 제22권4호
    • /
    • pp.733-744
    • /
    • 2016
  • In this study, optimum structural designs of braced (non-swaying) planar steel frames are investigated by using one of the recent meta-heuristic search techniques, teaching-learning based optimization. Optimum design problems are performed according to American Institute of Steel Construction- Allowable Stress Design (AISC-ASD) specifications. A computer program is developed in MATLAB interacting with SAP2000 OAPI (Open Application Programming Interface) to conduct optimization procedures. Optimum cross sections are selected from a specified list of 128W profiles taken from AISC. Two different braced planar frames taken from literature are carried out for stress, geometric size, displacement and inter-storey drift constraints. It is concluded that teaching-learning based optimization presents robust and applicable optimum solutions in multi-element structural problems.

Pareto fronts-driven Multi-Objective Cuckoo Search for 5G Network Optimization

  • Wang, Junyan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권7호
    • /
    • pp.2800-2814
    • /
    • 2020
  • 5G network optimization problem is a challenging optimization problem in the practical engineering applications. In this paper, to tackle this issue, Pareto fronts-driven Multi-Objective Cuckoo Search (PMOCS) is proposed based on Cuckoo Search. Firstly, the original global search manner is upgraded to a new form, which is aimed to strengthening the convergence. Then, the original local search manner is modified to highlight the diversity. To test the overall performance of PMOCS, PMOCS is test on three test suits against several classical comparison methods. Experimental results demonstrate that PMOCS exhibits outstanding performance. Further experiments on the 5G network optimization problem indicates that PMOCS is promising compared with other methods.

수치적 노이즈가 존재하는 사출 성형품 휨의 최적설계 (Design Optimization for Minimizing Warpage in Injection Molding Parts with Numerical Noise)

  • 박창현;김성룡;최동훈;표병기
    • 대한기계학회논문집A
    • /
    • 제29권11호
    • /
    • pp.1445-1454
    • /
    • 2005
  • In order to minimize warping deformation which is an essential factor in the failure of injection molding parts, this study proposes an optimization design method fer determining design variables of injection molding parts. First, using a commercial package program for injection molding analysis, namely, Computer Aided Plastics Application(CAPA), we investigate the effects of parameters of injection molding process. Next, an optimum design process is established by interfacing CAPA to PQRSM embedded in EMD10S, a design framework developed by the conte. of innovative Design Optimization Technology(iDOT). PQRSM is a very efficient sequential approximate optimization algorithm. Optimum design results demonstrate the effectiveness of the design method suggested in this study by showing that the results of the optimum design is better than those of the initial design. It is believed that the proposed methodology can be applied to other injection molding design applications.