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ABSTRACT

The general topology optimization can be considered as optimal material distribution. Such an approach can be unstable, unless
composite materials are introduced. In this research, a nodal volume fraction method is used to obtain the optimum topology of
continuum structures. This method is conducted from a composite material model composed of isotropic matter and spherical void.
Because the appearance of the chessboard patterns makes the interpretation of the optimal material layout very difficult, this method
contains a chessboard prevention strategy. In this research, several topology optimization problems are presented to demonstrate
the validity of the present method and the recursive quadratic programming algorithm is used to solve the topology optimization

problems.

Keywords: topology optimization, nodal volume fraction method, continuum stractures, chessboard patterns, recursive quadratic pro-

gramming algorithm

1. Introduction

The topology optimization using the design domain con-
cept can be considered as the material layout optimization.
In the topology optimization based on only the indicator
function, which is one if the material occupies the point
and zero otherwise, the existence of the solution is not
guaranteed because the indicator function is not smooth.
So, the concept of the composite material model is needed
to relax this problem into the well-defined problem. Since
the late of 1980’s, there are many methods which intro-
duce composite material model composed of matter and
void into the topology optimization based on the concept
of the design domain (Bendsge and Kikuchi, 1988; Gea,
1996; Mlejnek and Schirrmacher, 1993; Swan and
Kosaka, 1997; Yang and Chuang, 1994; Youn and Park,
1997). Of all these methods, there are mainly two
approaches for topology optimization of continuum struc-
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tures, namely, homogenization and density function
method.

In the homogenization method (Bendsge and Kikuchi,
1988), in order to find the optimal material distribution of
a continuum structure, it is assumed that the material of the
structure is not homogeneous and has a variable solid-cav-
ity microstructure. This method places infinitely many
microscale rectangular holes in design cells forming per-
forated materials. The sizes and orientation angle of the
rectangular micro-cavity in each design cell are treated as
design variables. It is the significant drawback of this
method that the number of design variables is very large.
And, this method requires much computational efforts for
calculating the equivalent material properties of each
design cell, because the displacement of each design cell is
necessary to find the equivalent material properties. On the
other hand, the density function method (Yang and
Chuang, 1994) replaces the foam-like material with an
equivalent homogeneous substitute and uses the material
density of the substitute as the design variable. In this
method, a fictitious relationship between the equivalent
Young’s modulus and the density is proposed. The rela-
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tionship is very simple and attractive because it is intro-
duced from the engineer’s intuition. However, the short-
coming of this method is the lack of theoretical support of
the fictitious relationship.

Most structural topology optimizations using the dis-
placement-based finite element method have an unde-
sirable feature that material is distributed in the chessboard
patterns. The cause of chessboard patterns is numerical
rather than physical in nature (Jog and Haber, 1996). That
is, the chessboard patterns are generated from the reason
that the numerical stability of each design cell, which is a
finite element, is not guaranteed in optimal iteration pro-
cess. This numerical instability is caused from the assump-
tion that the inner density of each element is constant.
Because the presence of the patterns makes the inter-
pretation of the optimal material Jayout difficult, it is nec-
essary to suppress the formation of the anomalies. In order
to overcome these anomalies, the use of higher order ele-
ments (Jog et al., 1994), image processing method (Sig-
mund, 1994), density redistribution algorithm (Youn and
Park, 1997), etc. have been studied in literature. The
method using higher order elements has a drawback that
the size of problem becomes too large to be practical since
a large number of elements are needed to manage the nec-
essary resolution. The other methods inspect the formation
of chessboard patterns over design domain and reduce the
porous regions in the optimal distribution during iterative
process. These chessboard prevention methods may have
an effect on the stability of the optimization algorithm.

The main objective of this research is the development
of a topology optimization method with chessboard pre-
vention strategy. In this research, the developed topology
optimization method is named the nodal volume fraction
method. In order to achieve the main objective, the present
research uses 1) a composite material model made up of

Fixed solid material region Void region

isotropic matter and spherical void, 2) volume fraction of
each node as design variable and 3) the shape function of a
linear finite element as a interpolation function.

The composite material model is selected to solve the
significant shortcomings of the homogenization and den-
sity function method. The equivalent material properties of
the composite material model are conducted using the
Mori-Tanaka mean field theory (Mori and Tanaka, 1973)
in conjunction with Eshelby’s equivalence principle
(Eshelby, 1957). This approach gives a simple closed-form
relationship between the equivalent Young’s modulus and
volume fraction of each element. This relationship is iden-
tical to that proposed by Gea (1996). However, the optimal
material layout of a continuum structure based on this rela-
tionship has many elements in which volume fractions are
intermediate values between void and solid material (Lim
and Lee, 1998). Therefore, in order to obtain a rigorous
composite material model, a penalty factor is introduced
into the relationship. The numerical role of a penalty factor
is to ensure that the design domain is primarily occupied
by either void or solid material. The bilinear function uti-
lizing nodal volume fractions and shape functions of linear
elements is the key to prevent the chessboard pattemns
entirely. Since the change of the penalty factor does not
entirely prevent the chessboard patterns, a strategy is nec-
essary to obtain the optimal material layout without chess-
board patterns. This strategy has no effect on the stability
of the optimization algorithm because the strategy does
not need to investigate the formation of chessboard pat-
terns during optimal iterative process. In this research, sev-
eral topology optimization problems are presented to
demonstrate the validity of the nodal volume fraction
method and the recursive quadratic programming (RQP)
algorithm, PLBA (Pshenichny-Lim-Belegundu-Arora) al-
gorithm (Lim and Arora, 1986), is used to solve the topol-
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Fig. 1. (a) The generalized structure for optimal material distribution and (b) the composite material model.
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ogy optimization problems.
2. Nodal Volume Fraction Method

As shown in Fig. 1, we consider a complete undeformed
design domain which is divided into suitable design cells
in order to find the optimal material distribution for a con-
tinuum structure. The suitable design cells intimate that
the design domain can be discretized in a number of dif-
ferent ways. That is, it can be modeled by full three-
dimensional elements or plate elements with in or out of
plane forces, etc. In Fig. 1, the design domain is subjected
to the applied loading and boundary conditions. Initially,
the design domain can have void region and fixed solid
material region.

To analyze the optimal material distribution problem, as
shown in Fig. 1, assume that each design cell is made of a
composite material model which consists of isotropic solid
matter and isotropic void. In order to estimate the equiv-
alent Young’s modulus of this model, we use the Mori-
Tanaka approximation and Eshelby’s equivalence prin-
ciple. The relationship between the equivalent Young’s
modulus and volume fraction of each design cell is defined
as follows:

SLE, (1)
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the composite model, ¢, and E, are the volume fraction of
each design cell and the true Young’s modulus for the
structure, respectively.

In this research, we introduce a penalty factor to Eq. (1)
as follows because the optimal material layout based on
Eq. (1) has many intermediate volume fractions and the
composite material model can not present a perfect void of
each design cell. The modification form of Eq. (1) is:

%
EH=2__C Eo (2)

where p is the penalty factor which has a value more than
‘1.

In order to investigate the effect of the penalty factor on
the result of optimal topology problem, we consider a real-
istic problem that a short cantilever beam is subjected to a
vertical load at the middle of the right side and its entire
left side is clamped. This problem is well-known topology
optimization problem and the result has been reported in
many literatures. In this example, the design objective is to
minimize the mean compliance while satisfying the weight
constraint is set to be less than 35% of the total weight.
The effects of the penalty factor on the optimal material
distribution of a short beam are presented in Fig. 2.

In Fig. 2, the white design cells represent the voids. The
more black a design cell is, the larger a volume fraction
is. Thus, the most black design cells represent that the
volume fractions of the design cells are ‘1’. As shown in
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Fig. 2. The effects of the penalty factor on the optimal material distribution.
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Fig. 2, using a penalty factor p =1, the chessboard pat-
terns are appeared remarkably in this result. The results,
using a penalty factor more than ‘3’, are represented by
the rough optimal material distributions. However, in the
case of a penalty factor p = 3, the layout has the volume
fractions neighboring void or solid and shows the smooth
optimal material distributions. Therefore, in this research,
we use the penalty factor p=3 in Eq. (2).

As shown in Fig. 2, it is known that the change of the
penalty factor does not entirely prevent the chessboard pat-
terns. The chessboard patterns are generated from the
assumption that the inner volume fraction of each cell is
constant. In this research, a strategy is developed which
efficiently prevents the chessboard patterns and has no
effects on the stability of the optimization algorithm. The
basic idea of this strategy is to relax the assumption that
the inner volume fraction of each design cell is constant.
That is, we assume that the inner volume fraction of each
design cell can be expressed as a continuous function of
the shape function and the nodal volume fraction. The
physical meaning of 'volume fraction of a certain node' is
equivalent to the volume fraction of infinitely small cell in
the design domain. Using this assumption, the inner vol-
ume fraction of each design cell is defined as:

co=Lic;+Lycy++Lc, = Y Lic 3)

i=1
where L, is the shape function, ¢, is the nodal volume
fraction which is used for the design variable in this
research and n denotes the total number of nodes in
design cell. Therefore, when Eq. (3) is substituted into
Eq. (2), the relationship between the equivalent Young’s
modulus and the design variable is derived as follows:

(2 (Lici)j
i=1

Ey=—E, 4)
2- 2 (L))

i=1

Next, we assume also that the inner volume fraction of
each design cell is same as the center volume fraction of
each design cell. From Eq. (4), the unique value of the
equivalent Young’s modulus is calculated for each design
cell. Using this value, the stiffness matrix of each design
cell can be symmetrically organized.

Finally, the optimum values of nodal volume fractions
obtained from topology optimization can be interpolated
into the center value of each design cell by the shape func-
tion. This center value of each design cell shows the opti-
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Fig. 3. The optimal material distribution of the short cantilever
beam.

mal material distribution without the chessboard patterns.
Using this strategy, the optimal material layout of the short
cantilever beam is as follows. This optimal layout is quite
similar to the results obtained from many researches.

3. Problem Formulation and Sensitivity Analysis

In this research, we consider two objective functions.
The first is to minimize the mean compliance and the sec-
ond is to maximize the natural frequency of a designated
mode. For each case, same constraint, i.e. a total material
usage constraint, is imposed. And, the volume fraction of
each node is considered as the design variable. Design
variables are continuous varying between ‘0’ and ‘I’.
Therefore, the volume fraction of the void phase is the-
oretically 0. But, in numerical analysis, the volume frac-
tion of the void phase is generally a small value compared
to that of the solid phase in order to maintain the state to
avoid the singularity of the finite element analysis. Thus,
the volume fraction of the void material is taken as ¢, =
10-3¢,;;, - The following problem formations are analogous
to well known formulations for sizing optimization.

3.1 Minimizing the mean compliance of a structure
3.1.1 Problem formulation
Find o
Minimize : W = {D(c)} [K(c)1{D(c)}
Subject to : [K(c){D(c))} = {F}
g=mylc;)—-my<0
107°<¢,<1, i=1,N (5)

where {D(c)} and [K(c))] represent the global displace-
ment and the global stiffness matrix respectively, {F} rep-
resents the applied load, m; is the total usage mass, m, is
the allowable mass, ¢, is the design variable, and N is the
total number of design variables which is equivalent to the
total number of nodes.
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In order to evaluate the global stiffness matrix as a func-
tion of design variables, it is necessary to know the stress-
strain matrix of each element. This matrix is simply
derived by using Eq. (4), for example, the matrix for the
plane-stress element is as follows:

" " 1v 0
Z(Lici)
i=1 E
[E,]= . =iv1o0 (6)
n -v
2- ¥ (Licy) 00 1_21
i=1

where [E,] represents the stress-strain matrix and v denotes
the Poisson’s ratio of the true material of a structure.
3.1.2 Sensitivity Analysis
The first order derivative of the objective function Eq.
(5) with respect to design variables ci can be easily cal-
culated as follows:

—{D}Ta[K]{DHz{D} )AL )

I

And then, substitute the following expression into Eq.
@,

HD} _ (L 9LK]
(2L 1y (AL iy ®)

where, in general, J{F}/dc,=0 because applied load is
independent of the design variables. Thus, we can derive
the simplified form of the first order design sensitivity
analysis of the objective function as:
d[K

& =Dy dip) ©)

In Eq. (9), the derivative of the global stiffness matrix
can be presented as follows:

NBE
AK] 1,08 ]TQ[—L][B \dy,

e

(10)

where NBE is the total number of neighboring element of
i th node, v, is the volume of j th element, [B}] and [E}]
represent the strain-displacement matrix and elasticity
matrix of j th element, respectively.

3.2 Maximizing a certain natural frequency of a structure
3.2.1 Problem formulation

Find e
Maximize : ]j(cj)
Subject to : [K(cpl{y}; = LIM(c)Hy};
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g=my(c;)-m4<0

107<¢,< 1,i=1,,N (1

where, f,, A; and {y}, are the j th natural frequency, eigen-
value and eigenvector, [M(c,)] is the global mass matrix. In
order to evaluate the global mass matrix as a function of
design variables, the equivalent density is defined from
expression as follows:

Py = Poz (Lic;) (12)

i=1

where p, and p, denote the equivalent density and the
true material density.

3.2.2 Sensitivity Analysis

The j th natural frequency is related to the corresponding
eigenvalue, as shown in the following equation:

A
=g

T (13)

In order to evaluate the sensitivity of the natural fre-
quency, first, we evaluate the sensitivity of the corre-
sponding eigenvalue. And then, using the following
equation, the sensitivity of the j th natural frequency can be
derived as:

df _ 1 _dk
dCi 47[A/A_'jdci

Thus the following sensitivity equation of the j th eigen-
value with respect to design variables is used in this
research, which is well known and for further details on
this equation, please refer to Ref. (Haug, Choi and
Komkov, 1986):

(14)

a[M]

{}Ta”q{y} RN (15)

3.3 Sensitivity analysis of constraint function
Eq. g=my(c;)-my<0 of Egs. (5) and (11) can be
expressed as:

EN n
g= Zero[ZLici)—mASO
i=1 i=1

where EN is the total number of elements. As shown in
Eq. (16), the constraint function is linear in the design
variable. Thus, the sensitivity analysis of the constraint
function can be directly evaluated with respect to design
variables as follows:

(16)

NBE

ZVL

an
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where NBE is the total number of neighboring element of
i th node.

4. Numerical Examples

In this section, in order to attest the propriety of the
described topology optimization approach in this research,
we consider optimal material layouts of three examples.
The first example is to minimize the mean compliance
while the second is to maximize a certain natural fre-
quency of a structure in plane stress conditions. The third
example contains maximizing a certain natural frequency
of a thin square plate according to changing the 4-corner
boundary conditions. In the third example, it is assumed
that the thin square plate is governed by Kirchoff's plate
theory (Dym and Shames, 1973). In second and third
examples, the subspace method (Bathe, 1996) is used to
evaluate eigenvalues and their corresponding eigenvectors
of the structure for the designated free vibration mode. Of
all numerical examples, the constraint functions are the
same that the used quantity of material must not exceed an
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Fig. 4. A square structure is subjected to uniform loads.
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allowable quantity. For all numerical examples, initial val-
ues of the design variables are set to ‘1’ so that the initial
design domain is identical to the geometry of the structure
which do not have holes. And, the material properties of
the isotropic matrix of the composite material model are
given by E,=207 Gpa, p,=7700 Kg/m® and v=1/3.

Example 1: A square structure subjected to uniform loads

In this example, we consider a square structure in Fig. 4.
To avoid the singularity of the finite element static anal-
ysis, this structure is imposed on boundary conditions in
which horizontal and vertical motions of center point are
fixed. Here, for the finite element analysis, 784 (28 x 28)
four-node plane stress elements and 841 nodes are used.
The constraint function is set not to exceed 35% of the
entire material.

Fig. 5 shows that the optimal material distribution obtained
by using the homogenized material model with p = 3 based
on Eq. (2) and Eq. (4). From Fig. 5, it is known that chess-
board patterns are successfully suppressed by the nodal vol-
ume fraction method. This example has been analyzed by
Youn and Park (Youn and Park, 1997). They used an artificial
material model based on Hashin-Shtrikman theory as a
homogenized material and the density redistribution algo-
rithm as the chessboard prevention strategy. The optimal
material layout in Fig. 5(b) is quite similar to the optimal
configuration suggested by them. The objective function is
changed from 0.547510-2 N - m to 0.1895102 N - m for the
optimal topology of Fig. 5(a) and from 0.547510-2 N - m to
0.2473102 N-m for the that of Fig. 5(b)

Example 2: A clamped 3-D beam for the axisymmetric
mode about z-axis
In this example, as shown in Fig. 6, we consider a 3-

(b)

Fig. 5. Optimal material distribution (a) without and (b) with chessboard prevention strategy.
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dimensional beam (the height is 1 m, the thickness is 1
m, and the length is 7 m) which is clamped at the left and
right middle points. And then, we idealize the beam to a
plane structure and analyze the optimal material layout of
the idealized beam for the natural frequency of a axi-
symmetric mode as shown in Fig. 7. Finally, using the
optimal material layout of the idealized beam, we assume
that the change of volume fraction is equal to the change
of thickness of the beam. That is, if the volume fraction
of a element is ‘0.3, the thickness of the element is ‘0.3’
In that case, the optimal layout and shape of 3-dimen-
sional is obtained as shown in Fig. 8.

In following Fig. 8, using 8-node solid elements of
ANSYS package, the bending mode of 3-D beam is pre-
sented. The initial frequency of the beam was 169.78 Hz
and the result frequency is 203.95 Hz.

Example 3: Optimal topology of a thin square plate
In this example, we consider the optimal material dis-
tribution of the thin square plate shown in Fig. 9 accord-
ing to changing the 4-corner boundary conditions of this
plate. The optimal topology of the 4-corner pin supported
thin square plate for the 2nd eigenmode has been dis-
cussed in Ref. (Kosaka and Swan, 1999) with a sym-
metry reduction method. As shown in Fig. 9, we divide
the thin square plate into 400 triangular elements and 221

7.0 m

— ]

.
1.0m <E

Design Domain

L. ¥

Fig. 6. Clamped beam at middle points of the left and right sides.
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Fig. 8. The axisymmetric mode of the 3-D optimal beam.
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Fig. 9. Thin square plate for the topology optimization.

Table 1. The first five natural frequencies of each case con-
straint of initial models.

Modell Natural frequency of each case of initial models
(Unit : Hz)

Mode Case 1 Case 3 Case 4 Case 5
1st mode 0.01977 0.02371 0.02442 0.02177
2rd mode 0.04382 0.05027 0.04712 0.04504
3 mode 0.04382 0.05030 0.05410 0.04905
4t mode 0.05435 0.06241 0.06145 0.05827
5t mode 0.10699 0.11808 0.11439 0.11154

nodes. The thickness of this plate is 1 m and the total
number of design variables is equal to the total node
numbers. The objective function is to maximize the nat-
ural frequency of 2nd free vibration mode and the used
quantity of the material must not exceed 60% of the
entire design domain. The optimal material layouts of
this plate are shown in Fig. 10.

In Fig.10, the symbol ‘A’ represents the pin-supported
boundary condition and the symbol ‘@ represents the
clamped boundary condition. As shown in Fig.10, white
elements represent voids, black elements represent that the
volume fraction of the element is ‘1’. In these optimal
results, it is also investigated that the chessboard patterns
must be removed. The optimal layout of ‘case 1" of Fig.10
is quite similar to the result obtained using symmetry
reduction method in Ref, (Kosaka and Swan, 1999). From
results of Fig.10, two obvious phenomena can be inspect-
ed. First, the optimal material layout is symmetric for the
symmetric boundary condition. Second, the material in
and around the clamped boundary condition is surely
maintained after optimal material distribution process.
Except case 2 and case 6 constraints, the first five natural
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Fig. 10. Optimal material layouts according to changing the 4-corner boundary conditions.

frequencies of initial models are represented in Table 1 and
the first five natural frequencies of optimal layouts are rep-
resented in Table 2. A commercial software, ANSYS
package, is used to check up frequencies of numerical
topology optimization results. From comparison Table 1
with Table 2, it is certain that the objective function to
increase the natural frequency of a designated mode is sat-
isfied. And, this causes frequencies of 3rd and 4th modes
to increase.

5. Conclusions

In this research, a new topology optimization method,
i.e. the nodal volume fraction method, based on the design
domain method has been proposed. A rigorous composite
material model made up of isotropic matter and spherical

Table 2. The first five natural frequencies of each case con-
straint of optimal material layouts.

Model Natural frequency o(er;c;h Ic;zs)e of optimal layouts
Mode Case 1 Case 3 Case 4 Case 5
15t mode 0.01552 0.02086 | 0.02124 0.01451
2 mode 0.04784 0.05837 | 0.05328 0.05208
34 mode 0.04784 0.05855 | 0.05446 0.05350
4% mode 0.09039 0.10304 | 0.09926 0.10663
5% mode 0.11143 0.13566 | 0.10231 0.10965

void was used in this method to solve the significant short-
comings of the homogenizati-on and density function
methods. And, to prevent the chessboard patterns entirely,
a bilinear function utilizing the nodal volume fraction and
shape functions of linear elements was used in this
method. Using this method, a mathematical programming
problem for topology optimization, which has the explicit
relationship between the equivalent material properties
and design variables, can be simply formulated. Thanks to
the explicit relationship, the sensitivity analysis of topol-
ogy optimization problem can be easily obtained also by
applying the direct differentiation method and the chess-
board patterns can be removed in the condition which
has no effects on the stability of the optimization algo-
rithm.

Several numerical examples have confirmed that the
present method can be used accurately for minimizing the
mean compliance and maximizing a certain natural fre-
quency of the designated mode of a structure. And, it is
expected that the present method can be applied not just
for simple linear elastic application but a wide variety of
other structural topology applications.
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