• Title/Summary/Keyword: Computer model

Search Result 14,800, Processing Time 0.036 seconds

An Algorithm for Workspace of Human Model using the joint limit angle (관절의 한계 각도를 고려한 인체모델의 Workspace 생성 알고리즘)

  • Yoon Seok-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.5 s.37
    • /
    • pp.171-177
    • /
    • 2005
  • This paper describes the method of calculating coordinate using Forward Kinematics and expresses the recursive equation as the numerical formula using a homogeneous coordinate for creating workspace. This paper proposes an algorithm for the workspace of human model using the recursive equation and the joint limit angle of human model, and describes the results of workspace of the human model as computer graphics.

  • PDF

A study of inverse kinematice using numerical methods (수치해석적 방법을 이용한 Inverse Kinematics에 관한 연구)

  • Oh, P.K.;Kang, M.J.;Han, C.G.
    • Journal of the Ergonomics Society of Korea
    • /
    • v.14 no.2
    • /
    • pp.33-39
    • /
    • 1995
  • The inverse Kinematics can be used for representing the motion of human body model. In order to find the final figure of the human body model with given target position, we can uwe the formula x=J .THETA. , where J is the Jacobian matrix of x=f( .THETA.), of the Inverse Kinematics. In this formula, f has so complicated form that it is difficult to calcuate the Jacobian matrix J by expanding all formulae exactly. In this paper, a numerical method that calculates the Jacobian matrix is proosed. The simulation results obtained by using the simple human model reprsent that the proposed. The simulation results obtained by using the simple human model represent that the proposed method is useful for generating the final figure of the body model.

  • PDF

Kriging Interpolation Methods in Geostatistics and DACE Model

  • Park, Dong-Hoon;Ryu, Je-Seon;Kim, Min-Seo;Cha, Kyung-Joon;Lee, Tae-Hee
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.619-632
    • /
    • 2002
  • In recent study on design of experiments, the complicate metamodeling has been studied because defining exact model using computer simulation is expensive and time consuming. Thus, some designers often use approximate models, which express the relation between some inputs and outputs. In this paper, we review and compare the complicate metamodels, which are expressed by the interaction of various data through trying many physical experiments and running a computer simulation. The prediction model in this paper employs interpolation schemes known as ordinary kriging developed in the fields of spatial statistics and kriging in Design and Analysis of Computer Experiments (DACE) model. We will focus on describing the definitions, the prediction functions and the algorithms of two kriging methods, and assess the error measures of those by using some validation methods.

A Symbolic Computation Method for Automatic Generation of a Full Vehicle Model Simulation Code for a Driving Simulator

  • Lee Ji-Young;Lee Woon-Sung
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.spc1
    • /
    • pp.395-402
    • /
    • 2005
  • This paper deals with modeling and computer simulation of a full multibody vehicle model for a driving simulator. The multibody vehicle model is based on the recursive formulation and a corresponding simulation code is generated automatically from AUTOCODE, which is a symbolic computation package developed by the authors using MAPLE. The paper describes a procedure for automatically generating a highly efficient simulation code for the full vehicle model, while incorporating realistically modeled components. The following issues have been accounted for in the procedure, including software design for representing a mechanical system in symbolic form as a set of computer data objects, a multibody formulation for systems with various types of connections between bodies, automatic manipulation of symbolic expressions in the multibody formulation, interface design for allowing users to describe unconventional force-and torque-producing components, and a method for accommodating external computer subroutines that may have already been developed. The effectiveness and efficiency of the proposed method have been demonstrated by the simulation code developed and implemented for driving simulation.

A NEW ALALYTICAL MODEL AND SENSORLESS APPROACH FOR SWITCHED RELUCTANCE MOTORS

  • Saha, S.;Kosaka, T.;Matsui, N.;Takeda, Y.
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.310-315
    • /
    • 1998
  • In this paper a new analytical model for the non-linear flux-linkage/current characteristics of the switched reluctance motors at different rotor positions is proposed. The model has been successfully verified by the simulation and the experimental results of the instantaneous current waveforms and the average torque values in both single pulse and multiple pulse operation of the motor. The uniqueness of the model lies in its defining a simple algorithm for determining the rotor position ($\theta$). Hence, sensorless operation of the motor can be easily implemented with the aid of this model.

  • PDF

Biomechanical analysis of human foot using the computer graphic-based model during walking (컴퓨터 그래픽 모델을 통한 보행 시 발의 생체역학적 해석)

  • 최현기;김시열;이범현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.1088-1092
    • /
    • 2002
  • The purpose of this investigation was to study the kinematics of joints between foot segments based on computer graphic-based model during the stance phase of walking. In the model, ail joints were assumed to act as monocentric, single degree of freedom hinge joints. The motion of foot was captured by a video collection system using four cameras. The model fitted in an individual subject was simulated with this motion data. The kinematic data of tarsometatarsal joints and metatarso-phalangeal joint were quantitatively similar to the previous data. Therefore, our method using the computer graphic-based model is considered useful.

  • PDF

Subjective Evaluation on Perceptual Tracking Errors from Modeling Errors in Model-Based Tracking

  • Rhee, Eun Joo;Park, Jungsik;Seo, Byung-Kuk;Park, Jong-Il
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.6
    • /
    • pp.407-412
    • /
    • 2015
  • In model-based tracking, an accurate 3D model of a target object or scene is mostly assumed to be known or given in advance, but the accuracy of the model should be guaranteed for accurate pose estimation. In many application domains, on the other hand, end users are not highly distracted by tracking errors from certain levels of modeling errors. In this paper, we examine perceptual tracking errors, which are predominantly caused by modeling errors, on subjective evaluation and compare them to computational tracking errors. We also discuss the tolerance of modeling errors by analyzing their permissible ranges.

A Flipped Classroom Model For Algorithm In College

  • Lee, Su-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.1
    • /
    • pp.153-159
    • /
    • 2017
  • In recent years there has been a rise in the use and interest of the flipped learning as a teaching and learning paradigm. The flipped learning model includes any use of Internet technology to enrich the learning in a classroom, so that a professor can spend more time interacting with students instead of lecturing. In the flipped model, students viewed video lectures online outside of class time. Students then performed two kinds of assignments, a teamwork assignment and an individual work assignment, through the class time. In this paper, we propose a flipped educational model for a college class. This experimental research compares class of college algorithm using the flipped classroom methods and the traditional lecture-homework structure and its effect on student achievement. The result data of mid-term exam and final exam were analyzed and compared with previous year data. The findings of this research show that there was not a significant difference in the scores of student between two lecturing methods. The survey result and lecture evaluation by students show that students are in favor of the flipped learning.

Development and Application of CT-SPI Model for Improving Computational Thinking for Elementary School Students

  • Sung, Young-Hoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.1
    • /
    • pp.169-180
    • /
    • 2016
  • In this paper, we propose a CT-SPI Model based on a physical computing for improving Computational Thinking(CT) for elementary students. This study analyzes the results obtained from applying the CT-SPI model to fourth-grade class. The model is designed to embrace the learning activities and CT elements for three different stages: System thinking, Prototyping and Interaction. For providing curriculum with CT-SPI model, physical SW educational module is developed, so that learners could focus on internalizing CT. The study results indicate that a learning satisfaction and a degree of learner interest improve significantly. Comprehensive CT capability assessment results in three levels show that the capability in lowest level (score is below 4 out of 10) has decreased by 46.6% but capability in highest level (over 7 out of 10) has increased by 20%.

An Adaptive Optimization Algorithm Based on Kriging Interpolation with Spherical Model and its Application to Optimal Design of Switched Reluctance Motor

  • Xia, Bin;Ren, Ziyan;Zhang, Yanli;Koh, Chang-Seop
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1544-1550
    • /
    • 2014
  • In this paper, an adaptive optimization strategy utilizing Kriging model and genetic algorithm is proposed for the optimal design of electromagnetic devices. The ordinary Kriging assisted by the spherical covariance model is used to construct surrogate models. In order to improve the computational efficiency, the adaptive uniform sampling strategy is applied to generate sampling points in design space. Through several iterations and gradual refinement process, the global optimal point can be found by genetic algorithm. The proposed algorithm is validated by application to the optimal design of a switched reluctance motor, where the stator pole face and shape of pole shoe attached to the lateral face of the rotor pole are optimized to reduce the torque ripple.