• 제목/요약/키워드: Computer aided diagnosis (CAD)

검색결과 65건 처리시간 0.029초

컴퓨터보조진단을 이용한 유방 초음파영상에서의 미세석회화 검출 효율 (Detection Efficiency of Microcalcification using Computer Aided Diagnosis in the Breast Ultrasonography Images)

  • 이진수;고성진;강세식;김정훈;박형후;최석윤;김창수
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제35권3호
    • /
    • pp.227-235
    • /
    • 2012
  • 유방영상은 유방 전체의 재현 가능한 영상을 만들며, 만져지지 않는 조기 유방암의 가장 중요한 소견인 미세석회화와 종괴를 발견할 수 있어 유방 질환의 일차적인 선별검사로 이용되고 있다. 유방 병변의 미세석회화는 조기 유방암의 진단에 있어서 중요한 병변으로 보고되고 있지만 유방초음파 검사에서 검출이 어렵다. 본 연구에서는 유방초음파 영상에서 미세석회화 검출을 위해 6가지의 질감분석 파라미터를 이용하였으며, 정상 초음파영상과 미세석회화가 보이는 초음파 영상 간의 병변인식률을 알아보았다. 실험결과로는 유방촬영영상과 유방 초음파영상에서 병변을 구별하는 컴퓨터자동진단 인식률은 70~98%로 상당히 높은 결과를 나타내었다. ROC 분석에서도 평균대조도와 엔트로피 파라미터의 특이도는 다소 낮게 나타났으나, 나머지 4개 파라미터의 민감도와 특이도는 90% 이상을 나타내어 초음파영상에서 미세석회화 검출의 가능성을 보였다. 향후 6가지 질감분석 알고리즘들 외에 추가적인 파라미터 알고리즘의 연구가 계속 진행되어 컴퓨터자동진단의 실용화기반을 마련한다면 전문의 진단의 예비단계로서 더욱 중요한 의미를 가질 것이며, 유방암의 조기진단에 매우 유용할 것으로 사료된다.

비심미적인 상악 전치부 환자에서 이중 스캔을 이용한 심미보철 수복 증례 (Aesthetic restoration n patients with unaesthetic maxillary anterior teeth using double scan : A case report)

  • 고창우;김민지;양홍서;박상원;박찬;윤귀덕
    • 대한치과보철학회지
    • /
    • 제56권2호
    • /
    • pp.166-172
    • /
    • 2018
  • 상악 전치부 치료 시에는 다양한 구도 속에서 체계적인 진단을 통해 적절한 형태와 배열, 색조를 가지는 수복물을 제작하여 심미적으로 환자가 만족할 수 있는 결과를 이끌어내야 한다. 이를 위해 치아 구도, 치은구도, 안면구도, 치아-안면 구도의 4가지 구도 속에서 조화를 이루는 진단 및 치료계획이 필요하다. 심미적인 욕구가 강한 경우, 주관적인 환자의 심미안을 만족시키면서 기능적인 부분을 확인하기 위해, 적절한 임시 수복물을 제작하여 기능적, 심미적 측면의 평가가 필요하다. 최종 보철물 제작에 이중 스캔을 이용하여 임시 수복물의 정보를 반영할 수 있다. 본 증례는 상악 전치부가 비심미적인 환자에서, 체계적인 심미 분석 하에 임시 수복물을 제작하고 기능적, 심미적 측면을 평가 및 수정하여, 이중 스캔을 통해 임시수복물의 정보를 최종 수복물에 반영 후 최종 수복한 증례이다.

한국형 디지털 마모그래피에서 SVM을 이용한 계층적 미세석회화 검출 방법 (A Hierarchical Microcalcification Detection Algorithm Using SVM in Korean Digital Mammography)

  • 권주원;강호경;노용만;김성민
    • 대한의용생체공학회:의공학회지
    • /
    • 제27권5호
    • /
    • pp.291-299
    • /
    • 2006
  • A Computer-Aided Diagnosis system has been examined to reduce the effort of radiologist. In this paper, we propose the algorithm using Support Vector Machine(SVM) classifier to discriminate whether microcalcifications are malignant or benign tumors. The proposed method to detect microcalcifications is composed of two detection steps each of which uses SVM classifier. The coarse detection step finds out pixels considered high contrasts comparing with neighboring pixels. Then, Region of Interest(ROI) is generated based on microcalcification characteristics. The fine detection step determines whether the found ROIs are microcalcifications or not by merging potential regions using obtained ROIs and SVM classifier. The proposed method is specified on Korean mammogram database. The experimental result of the proposed algorithm presents robustness in detecting microcalcifications than the previous method using Artificial Neural Network as classifier even when using small training data.

디지털 흉부영상에서 주성분분석을 이용한 폐암인식 (Recognition for Lung Cancer using PCA in the Digital Chest Radiography)

  • 박형후;옥치상;강세식;고성진;최석윤
    • 한국정보통신학회논문지
    • /
    • 제15권7호
    • /
    • pp.1573-1582
    • /
    • 2011
  • 흉부의 폐질환으로 폐암발생은 꾸준히 증가하고 있다. 일차적인 폐암진단 방법에는 흉부X선영상이다. 흉부X선영상 이용하여 폐암진단을 하기 위해서는 임상경험이 풍부한 의사가 필요하다. 그러나 풍부한 경험을 가진 의사라도 오진이 발생할 수 있고 이한 폐암의 조기진단과 생존률을 낮게 한다. 본 논문에서는 주성분분석을 이용하여 학습영상의 데이터베이스와 질병이 있는 흉부영상을 진단함으로써 컴퓨터보조진단의 기반을 마련하고자 한다. 이를 의사가 진단하기 전의 예비판독의 단계로 이용한다면 오진으로 인한 환자의 조기 진단률의 감소를 줄일 수가 있다. 실험은 정상흉부X선영상과 악성폐암인 기관지암(Bronchogenic Carcinoma)과 양성종양인 육아종(Granuloma)으로 실험하였다. 영상은 주성분분석 후 정상영상과 질환 영상의 고유영상을 추출하고 상호 비교한 뒤 인식효율을 비교하였다. 결과로는 정상영상과 질환영상간의 인식률은 높았으나 질환간의 인식효율은 정상에 비해 다소 떨어지는 것으로 나타났다. 흉부질환간의 인식효율을 높이기 위해서 관련 알고리즘에 관한 연구가 계속 이어진다면 컴퓨터보조진단에 좋은 연구기반이 되리라 생각한다.

폐 결절 검출을 위한 합성곱 신경망의 성능 개선 (Performance Improvement of Convolutional Neural Network for Pulmonary Nodule Detection)

  • 김한웅;김병남;이지은;장원석;유선국
    • 대한의용생체공학회:의공학회지
    • /
    • 제38권5호
    • /
    • pp.237-241
    • /
    • 2017
  • Early detection of the pulmonary nodule is important for diagnosis and treatment of lung cancer. Recently, CT has been used as a screening tool for lung nodule detection. And, it has been reported that computer aided detection(CAD) systems can improve the accuracy of the radiologist in detection nodules on CT scan. The previous study has been proposed a method using Convolutional Neural Network(CNN) in Lung CAD system. But the proposed model has a limitation in accuracy due to its sparse layer structure. Therefore, we propose a Deep Convolutional Neural Network to overcome this limitation. The model proposed in this work is consist of 14 layers including 8 convolutional layers and 4 fully connected layers. The CNN model is trained and tested with 61,404 regions-of-interest (ROIs) patches of lung image including 39,760 nodules and 21,644 non-nodules extracted from the Lung Image Database Consortium(LIDC) dataset. We could obtain the classification accuracy of 91.79% with the CNN model presented in this work. To prevent overfitting, we trained the model with Augmented Dataset and regularization term in the cost function. With L1, L2 regularization at Training process, we obtained 92.39%, 92.52% of accuracy respectively. And we obtained 93.52% with data augmentation. In conclusion, we could obtain the accuracy of 93.75% with L2 Regularization and Data Augmentation.

초음파영상에서 갑상선 결절의 컴퓨터자동진단을 위한 Texture Features 알고리즘 응용 (Application of Texture Features algorithm using Computer Aided Diagnosis of Papillary Thyroid Cancer in the Ultrasonography)

  • 고성진;이진수;예수영;김창수
    • 한국콘텐츠학회논문지
    • /
    • 제13권5호
    • /
    • pp.303-310
    • /
    • 2013
  • 초음파영상은 갑상선 질병에서 결절성 갑상선 질병을 진단하는 검사로서 결절의 위치, 크기, 개수, 내부 에코 특성에 대한 정보를 제공하여 암의 가능성이 높은 고위험 결절을 선별하며, 세침흡인 검사 시 정확한 유도를 가능하게 한다. 갑상선 결절 중 악성으로 진단되는 경우는 5% 미만이지만 초음파에서 감별진단이 중요하다. 그러므로 본 연구에서는 병리학적으로 갑상선 유두암으로 진단된 증례를 실험 대상으로 하며, 영역을 묘사하는 알고리즘으로 그 질감을 정량화하는 방법으로 질감특징 분석(TFA)를 적용하여 컴퓨터자동진단의 검출 효율을 실험하였다. 초음파영상에서 관심영역을 설정하여 $50{\times}50$ 픽셀 크기, 히스토그램 평활화로 전처리하여 실험영상을 획득하였다. 전체영상 70증례에서 갑상선 유두암의 영상 35증례를 테스트 영상으로 하고, 고유영상 생성의 정상영상 35증례를 학습영상으로 실험하였다. 질감특징 분석 알고리즘을 적용한 실험결과 GLavg, SKEW, UN, ENT 4개 파라미터의 질병 검출 효율이 91~100%로 높게 나타났다. 이는 갑상선 결절 질병을 감별하는 컴퓨터자동진단의 응용을 나타내며, 갑상선 질병의 감별진단에 전처리 자동진단 가능성을 나타낸다. 향후 추가적인 관련 알고리즘의 연구가 계속 진행된다면 갑상선 질병의 컴퓨터자동진단의 실용화기반을 마련할 수 있을 것이고, 다양한 초음파영상의 질병에 대한 적용이 가능할 것으로 사료된다.

구치부 교합지지 상실과 수직고경 감소를 동반한 부분 무치악 환자에서 교합평면 회복을 통한 완전구강회복 증례 (Full mouth rehabilitation through re-establishment of occlusal plane in partially edentulous patient with reduced vertical dimension accompanied by loss of posterior occlusal support)

  • 조영은;이성복;이석원;최조셉준석
    • 대한치과보철학회지
    • /
    • 제60권3호
    • /
    • pp.263-275
    • /
    • 2022
  • 구치부 교합지지가 상실되면 수직교합고경이 감소되면서 대합치의 점진적인 정출과 전치부 치아들의 전방 돌출을 초래하게 되고 결국 교합평면이 붕괴됨과 아울러 안모의 변화, 저작 효율 저하, 그리고 측두하악관절 장애 등의 문제가 발생할 수 있다. 이 경우, 정확한 진단 과 예지성 있는 치료계획 수립을 통한 교합평면 재설정 및 수직고경 회복이 필요하다. 본 증례는 71세 여성 환자로, 교합 평면이 붕괴되고 구치부 보철 수복 공간이 부족하여, 수직고경 거상을 동반한 완전구강회복을 계획하였다. 생리적 하악안정위, 연하, 발음, 안모, 전치부 평균 길이 등을 평가하는 임상적 과정을 통해 적절한 수직고경 및 3차원적 교합평면을 재설정하여 임시보철물을 제작하였고, 약 5개월 간 임시 보철물 상태로 악관절 및 저작근의 적응 여부를 관찰하고 교합을 안정화하였다. 기능적, 심미적 임상증상이 없음을 확인한 후 최종 보철 수복하였다. 이러한 환자친화적 완전구강회복 과정을 수행하여 기능 및 심미적으로 만족스러운 결과를 얻었기에 이를 보고하고자 한다.

간접촬영기의 디지털 영상 변환 장치 적용에 대한 연구 (A study on the digital image transfer application mass chest X-ray system up-grade)

  • 김선칠;박종삼;이준일
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제26권3호
    • /
    • pp.13-17
    • /
    • 2003
  • 현대 병원들은 보다 나은 의료서비스를 위해 디지털 시스템을 갖추고자 노력하고 있다. 하지만, 아직도 많은 부분은 아날로그 시스템과 Film 출력에 의존하고 있다. 본 연구는 차량 이동형 흉부 전용 간접 촬영기에 디지털 영상 변환 장치와 이에 연동되는 X-ray 발생장치의 제어 시스템, 출력 시스템을 디지털시스템으로 변환, 연동시켰으며, 획득한 영상을 간접 촬영 전용프로그램에서 편리하게 판독 할 수 있도록 설계하여 임상에 적용시켰다. 이러한 과정에서 발생되는 문제점을 현실적으로 해결하였으며, 방사선사 입장에서 업무의 효율성을 높이고자 몇 가지 프로그램을 개발 적용하였다. 향후 미래지향적인 디지털의료 영상 시스템을 갖추기 위해 각종 프로그램과 시스템과도 연동이 되도록 설계하여 임상에 적용하여 우수성을 입증하였다.

  • PDF

복부 CT 영상에서 신장암의 자동추출 (Automatic Detection of Kidney Tumor from Abdominal CT Scans)

  • 김도연;노승무;조준식;김종철;박종원
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제29권11호
    • /
    • pp.803-808
    • /
    • 2002
  • 본 논문은 복부 컴퓨터단층촬영(CT) 영상에서의 자동화된 신장 및 신장암 추출에 관한 연구를 수행하였다. 필름으로 보관된 복부 CT 영상을 디지털화하여 영상분석을 수행하였으며, 명암값에 의한 임계값(Gray-Level Thresholding) 처리 기법을 사용하여 신장만을 분리하였다. 신장암의 샘플영상에 대한 텍스쳐(Texture)분석 결과를 토대로, 대표적인 통계적 모멘트 값인 평균 및 표준 편차값을 동질성 시험 기준으로 삼아 신장암의 SEED를 선택하였다. 선택된 SEED의 중앙 픽셀을 시작점으로 하여, 명암값을 동질성 시험기준으로 사용한 영역확장(Region Growing) 방법을 적용하여 신장암을 추출하였다. GE사의 Hispeed Advantage CT 스캐너를 사용하여 촬영된 9개의 예, 총 113매 영상을 Lumisys LS-40 필름 디지타이저로 디지털화 하여 적용한 결과, 85%의 신장암 추출 민감도를 가진다.

평활화 알고리즘에 따른 자궁경부 분류 모델의 성능 비교 연구 (A Performance Comparison of Histogram Equalization Algorithms for Cervical Cancer Classification Model)

  • 김윤지;박예랑;김영재;주웅;남계현;김광기
    • 대한의용생체공학회:의공학회지
    • /
    • 제42권3호
    • /
    • pp.80-85
    • /
    • 2021
  • We developed a model to classify the absence of cervical cancer using deep learning from the cervical image to which the histogram equalization algorithm was applied, and to compare the performance of each model. A total of 4259 images were used for this study, of which 1852 images were normal and 2407 were abnormal. And this paper applied Image Sharpening(IS), Histogram Equalization(HE), and Contrast Limited Adaptive Histogram Equalization(CLAHE) to the original image. Peak Signal-to-Noise Ratio(PSNR) and Structural Similarity index for Measuring image quality(SSIM) were used to assess the quality of images objectively. As a result of assessment, IS showed 81.75dB of PSNR and 0.96 of SSIM, showing the best image quality. CLAHE and HE showed the PSNR of 62.67dB and 62.60dB respectively, while SSIM of CLAHE was shown as 0.86, which is closer to 1 than HE of 0.75. Using ResNet-50 model with transfer learning, digital image-processed images are classified into normal and abnormal each. In conclusion, the classification accuracy of each model is as follows. 90.77% for IS, which shows the highest, 90.26% for CLAHE and 87.60% for HE. As this study shows, applying proper digital image processing which is for cervical images to Computer Aided Diagnosis(CAD) can help both screening and diagnosing.