International Journal of Computer Science & Network Security
/
제22권12호
/
pp.98-106
/
2022
A condition of the retina known as hypertensive retinopathy (HR) is connected to high blood pressure. The severity and persistence of hypertension are directly correlated with the incidence of HR. To avoid blindness, it is essential to recognize and assess HR as soon as possible. Few computer-aided systems are currently available that can diagnose HR issues. On the other hand, those systems focused on gathering characteristics from a variety of retinopathy-related HR lesions and categorizing them using conventional machine-learning algorithms. Consequently, for limited applications, significant and complicated image processing methods are necessary. As seen in recent similar systems, the preciseness of classification is likewise lacking. To address these issues, a new CAD HR-diagnosis system employing the advanced Deep Dense CNN Learning (DD-CNN) technology is being developed to early identify HR. The HR-diagnosis system utilized a convolutional neural network that was previously trained as a feature extractor. The statistical investigation of more than 1400 retinography images is undertaken to assess the accuracy of the implemented system using several performance metrics such as specificity (SP), sensitivity (SE), area under the receiver operating curve (AUC), and accuracy (ACC). On average, we achieved a SE of 97%, ACC of 98%, SP of 99%, and AUC of 0.98. These results indicate that the proposed DD-CNN classifier is used to diagnose hypertensive retinopathy.
Young Hoon Chang;Cheol Min Shin;Hae Dong Lee;Jinbae Park;Jiwoon Jeon;Soo-Jeong Cho;Seung Joo Kang;Jae-Yong Chung;Yu Kyung Jun;Yonghoon Choi;Hyuk Yoon;Young Soo Park;Nayoung Kim;Dong Ho Lee
Journal of Gastric Cancer
/
제24권3호
/
pp.327-340
/
2024
Purpose: Results of initial endoscopic biopsy of gastric lesions often differ from those of the final pathological diagnosis. We evaluated whether an artificial intelligence-based gastric lesion detection and diagnostic system, ENdoscopy as AI-powered Device Computer Aided Diagnosis for Gastroscopy (ENAD CAD-G), could reduce this discrepancy. Materials and Methods: We retrospectively collected 24,948 endoscopic images of early gastric cancers (EGCs), dysplasia, and benign lesions from 9,892 patients who underwent esophagogastroduodenoscopy between 2011 and 2021. The diagnostic performance of ENAD CAD-G was evaluated using the following real-world datasets: patients referred from community clinics with initial biopsy results of atypia (n=154), participants who underwent endoscopic resection for neoplasms (Internal video set, n=140), and participants who underwent endoscopy for screening or suspicion of gastric neoplasm referred from community clinics (External video set, n=296). Results: ENAD CAD-G classified the referred gastric lesions of atypia into EGC (accuracy, 82.47%; 95% confidence interval [CI], 76.46%-88.47%), dysplasia (88.31%; 83.24%-93.39%), and benign lesions (83.12%; 77.20%-89.03%). In the Internal video set, ENAD CAD-G identified dysplasia and EGC with diagnostic accuracies of 88.57% (95% CI, 83.30%-93.84%) and 91.43% (86.79%-96.07%), respectively, compared with an accuracy of 60.71% (52.62%-68.80%) for the initial biopsy results (P<0.001). In the External video set, ENAD CAD-G classified EGC, dysplasia, and benign lesions with diagnostic accuracies of 87.50% (83.73%-91.27%), 90.54% (87.21%-93.87%), and 88.85% (85.27%-92.44%), respectively. Conclusions: ENAD CAD-G is superior to initial biopsy for the detection and diagnosis of gastric lesions that require endoscopic resection. ENAD CAD-G can assist community endoscopists in identifying gastric lesions that require endoscopic resection.
본 연구는 초음파영상에서 컴퓨터보조진단으로 유방질환의 병변인식률을 알아보고자 6가지 질감특성분석 파라미터(평균밝기, 대조도, 평탄도, 왜곡도, 균일도, 엔트로피) 알고리즘을 제안하였다. 2013년 8월에서 2014년 1월까지 부산소재 대학병원을 내원한 환자 중 영상의학과 전문의의 판독과 세포병리학 진단 결과를 토대로 한 90증례의 유방 초음파영상을 대상으로 하였다. 연구방법은 유방 초음파영상에서 관심영역을 $50{\times}50$ 픽셀 크기로 설정하였으며, 획득된 실험영상(정상, 양성, 악성)에 히스토그램 평활화의 전처리 과정 후 MATLAB을 이용한 질감특성분석 알고리즘의 결과값을 산출하였다. 그 결과 제안된 질감특성분석 파라미터 중 평균밝기, 왜곡도, 균일도, 엔트로피의 정상과 악성의 병변인식률은 100%로 높게 나타났으며. 정상과 양성의 병변인식률은 약 83~96%를 나타내었다. 이러한 결과는 유방질환에서 감별진단의 전처리 단계로 자동진단의 가능성을 나타내며, 향후 제안된 알고리즘의 추가적인 연구와 다양한 임상증례에 대한 신뢰성과 재현성이 제공된다면 컴퓨터보조진단의 실용화기반을 마련할 수 있을 것이고, 다양한 초음파 영상에 대한 적용이 가능할 것으로 사료된다.
디지털 기술은 점차 그 영역을 넓혀 치의학의 여러 분야에 큰 영향을 미치고 있다. 최근 디지털 치의학에서는 다양한 삼차원적(3D) 이미지 데이터를 하나로 중첩시켜 진단 및 보철물 제작에 활용하는 것의 중요성이 대두되고 있다. 안면 스캔, 구내 스캔, 하악 운동 기록(mandibular movement recording) 등의 데이터를 통합하면 가상 환자 모델을 구성할 수 있다. 가상 환자(Virtual patient)란 구내 및 구외 연조직, 잔존 치열, 동적 교합 등 디지털 3D 진단 데이터를 통합하여 형성되며 이를 통해 보철 치료의 결과 등을 가상으로 시뮬레이션을 시행할 수 있다. 본 증례에서의 환자는 37세 여성 및 55세 여성 환자로 각각 기존 보철물의 외형이 틀어진 것 같다는 주소와 근관치료 후 전치부 보철물의 재제작을 주소로 내원하였다. 각 환자에서 3D 안면 스캔을 채득하였으며, ARCUS Digma 2 (KaVo Dental GmbH, Biberach an der Riss, Germany)를 통해 환자의 하악 운동을 기록하였다. 수집한 데이터를 computer-aided design (CAD) 소프트웨어(Exocad dental CAD; exocad GmbH, Darmstadt, Germany) 상에서 하나로 통합하여 가상 교합기에 옮겨 디지털 가상 환자를 형성하였다. 이를 통해 임시 고정성 보철물을 디자인하고 수복하여 평가하였으며, 최종수복물로 옮겨 심미적, 기능적으로 만족할 만한 결과를 보였기에 이를 보고하고자 한다.
컴퓨터지원진단(Computer Aided Diagnosis; CAD) 시스템은 방사선 의사들이 흉부 X-ray 영상에서 결절을 탐지하는데 있어 실제적으로 발생할 수 있는 오진율을 줄이고, 폐 결절이 존재하는 폐야에서 결절의 존재 유무를 판단하여 검출을 표시함으로써 진단율을 개선시킬 수 있도록 하였다. 본 논문은 흉부 X-ray 영상에서의 폐 결절을 추출하는데 유전자 알고리즘(Genetic Algorithm)을 이용한 템플릿 매칭(Template Matching) 방법을 제안한다. 제안한 방법은 흉부 X-ray 영상에 존재하는 결절과 레퍼런스 이미지를 매칭시켜 적합도를 계산한 후, 그 값을 통하여 수치가 낮은 개체를 선택하여 높은 개체와 교차시킨다. 그리고 레퍼런스 이미지는 결절이 존재하는 환자 X-ray 영상에서 샘플 노듈을 추출한 후 가우시안 분포를 갖는 512개의 레퍼런스 이미지를 생성하였다. 본 논문에서 사용된 영상은 결절 50개, 비결절 30개와 흉부 X-ray 영상에서 육안으로 판별이 가능한 결절 영상을 20개를 포함하여 총 100개 영상을 사용하였다. 실험 결과 83%의 결절을 자동 추출 하였으며, 가장 적절한 레퍼런스 이미지를 발견하고 이를 흉부영상에 매칭시켜 정확한 결절의 위치를 확인하였다.
Recently, image matching becomes important in Computer Aided Diagnosis (CAD) due to the huge amount of medical images. Specially, texture feature is useful in medical image matching. However, texture features such as co-occurrence matrices can't describe well the spatial distribution of gray levels of the neighborhood pixels. In this paper we propose a frequency domain-based texture feature extractor that describes the local spatial distribution for medical image retrieval. This method is based on 2D Local Discrete Fourier transform of local images. The features are extracted from local Fourier histograms that generated by four Fourier images. Experimental results using 40 classes Brodatz textures and 1 class of Emphysema CT images show that the average accuracy of retrieval is about 93%.
The analysis of digital microscopy images plays a vital role in computer-aided diagnosis (CAD) and prognosis. The main purpose of this paper is to develop a machine learning technique to predict the histological grades in prostate biopsy. To perform a multiclass classification, an AI-based deep learning algorithm, a multichannel convolutional neural network (MCCNN) was developed by connecting layers with artificial neurons inspired by the human brain system. The histological grades that were used for the analysis are benign, grade 3, grade 4, and grade 5. The proposed approach aims to classify multiple patterns of images extracted from the whole slide image (WSI) of a prostate biopsy based on the Gleason grading system. The Multichannel Convolution Neural Network (MCCNN) model takes three input channels (Red, Green, and Blue) to extract the computational features from each channel and concatenate them for multiclass classification. Stain normalization was carried out for each histological grade to standardize the intensity and contrast level in the image. The proposed model has been trained, validated, and tested with the histopathological images and has achieved an average accuracy of 96.4%, 94.6%, and 95.1%, respectively.
역공학의 한 방법으로 엑스선 전산 단층촬영 장치에서 획득한 삼차원 데이터를 CAD(computeraided design) 데이터로 변환하여 쾌속조형 모델을 제작할 수 있고, 또한 삼차원 가시화를 통해 피검사체의 오차를 확인하고 분석할 수 있는 알고리즘들에 대한 연구를 수행하였다. 연구 결과를 바탕으로 GUI(graphical user interface) 기반의 소프트웨어를 개발하였다. 개발한 소프트웨어의 검증을 위하여 산업 및 의료용 샘플들에 대한 전산 단층촬영 스캐닝을 수행하고 CAD 데이터 변환 및 컴퓨터 원용 결함진단 시뮬레이션을 수행하였다. 이를 통해 컴퓨터 원용 결함진단의 산업 및 의료분야 적용 가능성을 확인하였다.
목적 3-tesla (이하 T) 자기공명영상에서 비특이 침윤성 유방암의 컴퓨터보조진단 인자들과 병리적 면역조직화학 표지자들과의 상관성을 알아보고자 하였다. 대상과 방법 2018년 1월부터 2019년 4월까지 비특이 침윤성 유방암으로 진단받은 총 94명의 3T 자기공명영상에서 컴퓨터보조진단 시스템을 통해 얻은 혈관조영부피, 최대 조영증강, 조기 및 지연 조영증강 양상과 면역화학인자와 유방암의 분자형 아형과의 상관성을 Dwass, Steel, Critchlow-Fligner 비교 분석과 이분형 로지스틱 회귀 분석을 이용하여 후향적으로 연구하였다. 결과 혈관조영부피가 큰 비특이 침윤성 유방암이 핵등급과 조직학적 등급이 높고, 림프절 전이가 있고, 에스트로겐 수용체/프로게스테론 수용체 음성, 인간 표피성장인자수용체 2/Ki-67 양성이 많았다. Ki-67 양성인 비특이 침윤성 유방암에서 지연기 소실 성분 비율이 높고 지연기 지속 조영증강 비율이 낮았다. 이항회귀분석에서는 컴퓨터보조진단 시스템의 요소 중 혈관조영부피 인자가 독립적으로 핵등급, 조직학적 등급, 림프절 전이, 에스트로겐/프로게스테론 수용체, 인간 표피성장인자수용체 2와 Ki-67과 상관성이 있고, 지연기 소실 및 지속 조영증강 인자가 Ki-67과 상관성이 있었다. 결론 조영증강 유방 MRI 컴퓨터보조진단 시스템 인자 중 혈관조영부피 요소와 지연기 소실/지속 조영증강 비율이 예후 예측 인자로 알려진 면역화학인자들과 연관성이 높아 임상적 예후 예측 인자로서 이용될 수 있을 것으로 사료된다.
Transactions on Electrical and Electronic Materials
/
제15권4호
/
pp.230-234
/
2014
Automatic detection of disease helps medical institutions that are introducing digital images to read images rapidly and accurately, and is thus applicable to lesion diagnosis and treatment. The aim of this study was to apply a symmetry contribution algorithm to unsharp mask filter-applied MR images and propose an analysis technique to automatically recognize brain tumor and edema. We extracted the skull region and drawed outline of the skull in database of images obtained at P University Hospital and detected an axis of symmetry with cerebral characteristics. A symmetry contribution algorithm was then applied to the images around the axis of symmetry to observe intensity changes in pixels and detect disease areas. When we did not use the unsharp mask filter, a brain tumor was detected in 60 of a total of 95 MR images. The disease detection rate for the brain was 63.16%. However, when we used the unsharp mask filter, the tumor was detected in 87 of a total of 95 MR images, with a disease detection rate of 91.58%. When the unsharp mask filter was used in the pre-process stage, the disease detection rate for the brain was higher than when it was not used. We confirmed that unsharp mask filter can be used to rapidly and accurately to read many MR images stored in a database.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.