Acknowledgement
This research was supported by the Deanship of Scientific Research, Imam Mohammad Ibn Saud Islamic University (IMSIU), Saudi Arabia, Grant No. (20-13-09-002).
References
- Mozaffarian, D. et al. (2016). Executive Summary: Heart Disease and Stroke Statistics-2016 Update: A Report From the American Heart Association. Circulation, 133 4, 447-54. https://doi.org/10.1161/CIR.0000000000000366
- Rosendorff, C., Lackland, D. T., Allison, M., Aronow, W. S., Black, H. R., Blumenthal, R. S., & Gersh, B. J. (2015). Treatment of hypertension in patients with coronary artery disease: a scientific statement from the American Heart Association, American College of Cardiology, and American Society of Hypertension. Journal of the American College of Cardiology, 65 18, 1998-2038. https://doi.org/10.1016/j.jacc.2015.02.038
- Raghavendra, U., Fujita, H., Bhandary, S.V., Gudigar, A., Tan, J.H., & Acharya, U.R. (2018). Deep convolution neural network for accurate diagnosis of glaucoma using digital fundus images. Inf. Sci., 441, 41-49. https://doi.org/10.1016/j.ins.2018.01.051
- Akagi, S., Matsubara, H., Nakamura, K., & Ito, H. (2018). Modern treatment to reduce pulmonary arterial pressure in pulmonary arterial hypertension. Journal of cardiology, 72 6, 466-472. https://doi.org/10.1016/j.jjcc.2018.04.014
- Gamella-Pozuelo, L., Fuentes-Calvo, I., Gomez-Marcos, M. A., Recio-Rodriguez, J. I., Agudo-Conde, C., Fernandez-Martin, J. L., & Martinez-Salgado, C. (2015). Plasma cardiotrophin-1 as a marker of hypertension and diabetes-induced target organ damage and cardiovascular risk. Medicine, 94 30.
- Wiharto and Suryani E. (2019). The review of computer aided diagnostic hypertensive retinopathy based on the retinal image processing. IOP Conf. Series: Materials Science and Engineering, 620.
- Triwijoyo, B. K., Budiharto, W., & Abdurachman, E. (2017). The Classification of Hypertensive Retinopathy using Convolutional Neural Network. Procedia Computer Science, 116, 166-173. https://doi.org/10.1016/j.procs.2017.10.066
- Garcia-Floriano, A., Ferreira-Santiago, A., Nieto, O.C., & Yanez-Marquez, C. (2017). A machine learning approach to medical image classification: Detecting age-related macular degeneration in fundus images. Comput. Electr. Eng., 75, 218-229. https://doi.org/10.1016/j.compeleceng.2017.11.008
- Asiri, N., Hussain, M., & Aboalsamh, H.A. (2018). Deep Learning based Computer-Aided Diagnosis Systems for Diabetic Retinopathy: A Survey. Artificial intelligence in medicine, 99, 101701.
- Abbas, Q., Ibrahim, M.E., & Jaffar, M.A. (2018). A comprehensive review of recent advances on deep vision systems. Artificial Intelligence Review, 52, 39-76. https://doi.org/10.1007/s10462-018-9633-3
- Abbas, Q., & Celebi, M. E. (2019). DermoDeep-A classification of melanoma-nevus skin lesions using multi-feature fusion of visual features and deep neural network. Multimedia Tools and Applications, 78 16, 23559-23580. https://doi.org/10.1007/s11042-019-7652-y
- Sengupta, S., Singh, A., Leopold, H.A., Gulati, T., & Lakshminarayanan, V. (2020). Ophthalmic diagnosis using deep learning with fundus images - A critical review. Artificial intelligence in medicine, 102, 101758.
- Akbar, S., Akram, M.U., Sharif, M., Tariq, A., & Yasin, U. (2018). Arteriovenous ratio and papilledema based hybrid decision support system for detection and grading of hypertensive retinopathy. Computer methods and programs in biomedicine, 154, 123-141. https://doi.org/10.1016/j.cmpb.2017.11.014
- Abbasi-Sureshjani, S., Smit-Ockeloen, I., Bekkers, E.J., Dashtbozorg, B., & Romeny, B.M. (2016). Automatic detection of vascular bifurcations and crossings in retinal images using orientation scores. 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), 189-192.
- Cavallari, M., Stamile, C., Umeton, R., Calimeri, F., & Orzi, F. (2015). Novel Method for Automated Analysis of Retinal Images: Results in Subjects with Hypertensive Retinopathy and CADASIL. BioMed research international.
- Akbar, S., Akram, M.U., Sharif, M., Tariq, A., & Khan, S.A. (2018). Decision support system for detection of hypertensive retinopathy using arteriovenous ratio. Artificial intelligence in medicine, 90, 15-24. https://doi.org/10.1016/j.artmed.2018.06.004
- Holm, S.I., Russell, G., Nourrit, V., & McLoughlin, N.P. (2017). DR HAGIS-a fundus image database for the automatic extraction of retinal surface vessels from diabetic patients. Journal of Medical Imaging, 4.
- Goswami, S., Goswami, S., & De, S. (2017). Automatic Measurement and Analysis of Vessel Width in Retinal Fundus Image. Springer 1st International Conference on Intelligent Computing and Communication, 451-458.
- Irshad, S., & Akram, M.U. (2014). Classification of retinal vessels into arteries and veins for detection of hypertensive retinopathy. 2014 Cairo International Biomedical Engineering Conference (CIBEC), 133-136.
- Cavallari, M., Stamile, C., Umeton, R., Calimeri, F., & Orzi, F. (2015). Novel Method for Automated Analysis of Retinal Images: Results in Subjects with Hypertensive Retinopathy and CADASIL. BioMed research international.
- Irshad, S., Akram, M.U., Salman, M.S., & Yasin, U. (2014). Automated detection of Cotton Wool Spots for the diagnosis of Hypertensive Retinopathy. 2014 Cairo International Biomedical Engineering Conference (CIBEC), 121-124.
- Syahputra, M.F., Amalia, C., Rahmat, R.F., Abdullah, D., Napitupulu, D., Setiawan, M.I., Albra, W., Nurdin, & Andayani, U. (2018). Hypertensive retinopathy identification through retinal fundus image using backpropagation neural network. Journal of Physics: Conference Series, 978.
- Zhu, C., Zou, B., Zhao, R., Cui, J., Duan, X., Chen, Z., Liang, Y. (2017). Retinal vessel segmentation in colour fundus images using Extreme Learning Machine. Computerized Medical Imaging and Graphics, 55,68-77. https://doi.org/10.1016/j.compmedimag.2016.05.004
- Triwijoyo, B. K., and Pradipto, Y. D. (2017). Detection of Hypertension Retinopathy Using Deep Learning and Boltzmann Machines. Journal of Physics: Conference Series, 801 1, 012039.
- Tan, J. H., Acharya, U. R., Bhandary, S. V., Chua, K. C., Sivaprasad, S. (2017). Segmentation of optic disc fovea and retinal vasculature using a single convolutional neural network. Journal of Computational Science, 20, 70-79. https://doi.org/10.1016/j.jocs.2017.02.006
- AlBadawi, S. and Fraz, F. F. (2018). Arterioles and Venules Classification in Retinal Images Using Fully Convolutional Deep Neural Network. The 15th International Conference on Image Analysis and Recognition (ICIAR'18), 659-668.
- Welikala, R.A., Foster, P.J., Whincup, P., Rudnicka, A.R., Owen, C.G., Strachan, D.P., & Barman, S. (2017). Automated arteriole and venule classification using deep learning for retinal images from the UK Biobank cohort. Computers in biology and medicine, 90, 23-32. https://doi.org/10.1016/j.compbiomed.2017.09.005
- Yao, Z., Zhang, Z., & Xu, L. (2016). Convolutional Neural Network for Retinal Blood Vessel Segmentation. The 9th International Symposium on Computational Intelligence and Design (ISCID), 1, 406-409.
- Prentasic, P., & Loncaric, S. (2015). Detection of exudates in fundus photographs using convolutional neural networks. 2015 9th International Symposium on Image and Signal Processing and Analysis (ISPA), 188-192.