• Title/Summary/Keyword: Computer Vision system

Search Result 1,064, Processing Time 0.027 seconds

Research Trends of Health Recommender Systems (HRS): Applying Citation Network Analysis and GraphSAGE (건강추천시스템(HRS) 연구 동향: 인용네트워크 분석과 GraphSAGE를 활용하여)

  • Haryeom Jang;Jeesoo You;Sung-Byung Yang
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.2
    • /
    • pp.57-84
    • /
    • 2023
  • With the development of information and communications technology (ICT) and big data technology, anyone can easily obtain and utilize vast amounts of data through the Internet. Therefore, the capability of selecting high-quality data from a large amount of information is becoming more important than the capability of just collecting them. This trend continues in academia; literature reviews, such as systematic and non-systematic reviews, have been conducted in various research fields to construct a healthy knowledge structure by selecting high-quality research from accumulated research materials. Meanwhile, after the COVID-19 pandemic, remote healthcare services, which have not been agreed upon, are allowed to a limited extent, and new healthcare services such as health recommender systems (HRS) equipped with artificial intelligence (AI) and big data technologies are in the spotlight. Although, in practice, HRS are considered one of the most important technologies to lead the future healthcare industry, literature review on HRS is relatively rare compared to other fields. In addition, although HRS are fields of convergence with a strong interdisciplinary nature, prior literature review studies have mainly applied either systematic or non-systematic review methods; hence, there are limitations in analyzing interactions or dynamic relationships with other research fields. Therefore, in this study, the overall network structure of HRS and surrounding research fields were identified using citation network analysis (CNA). Additionally, in this process, in order to address the problem that the latest papers are underestimated in their citation relationships, the GraphSAGE algorithm was applied. As a result, this study identified 'recommender system', 'wireless & IoT', 'computer vision', and 'text mining' as increasingly important research fields related to HRS research, and confirmed that 'personalization' and 'privacy' are emerging issues in HRS research. The study findings would provide both academic and practical insights into identifying the structure of the HRS research community, examining related research trends, and designing future HRS research directions.

A study on the improvement of artificial intelligence-based Parking control system to prevent vehicle access with fake license plates (위조번호판 부착 차량 출입 방지를 위한 인공지능 기반의 주차관제시스템 개선 방안)

  • Jang, Sungmin;Iee, Jeongwoo;Park, Jonghyuk
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.2
    • /
    • pp.57-74
    • /
    • 2022
  • Recently, artificial intelligence parking control systems have increased the recognition rate of vehicle license plates using deep learning, but there is a problem that they cannot determine vehicles with fake license plates. Despite these security problems, several institutions have been using the existing system so far. For example, in an experiment using a counterfeit license plate, there are cases of successful entry into major government agencies. This paper proposes an improved system over the existing artificial intelligence parking control system to prevent vehicles with such fake license plates from entering. The proposed method is to use the degree of matching of the front feature points of the vehicle as a passing criterion using the ORB algorithm that extracts information on feature points characterized by an image, just as the existing system uses the matching of vehicle license plates as a passing criterion. In addition, a procedure for checking whether a vehicle exists inside was included in the proposed system to prevent the entry of the same type of vehicle with a fake license plate. As a result of the experiment, it showed the improved performance in identifying vehicles with fake license plates compared to the existing system. These results confirmed that the methods proposed in this paper could be applied to the existing parking control system while taking the flow of the original artificial intelligence parking control system to prevent vehicles with fake license plates from entering.

Alternative Tracing Method for Moving Object Using Reference Template in Real-time Image - Focusing on Parking Management System (참조 템플릿 기반 실시간 이동체 영상을 이용한 대안적 탐지 방안 - 주차관리시스템을 대상으로)

  • Joo, Yong Jin;Kang, Lee Seul;Hahm, Chang Hahk
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.5
    • /
    • pp.495-503
    • /
    • 2014
  • As the number of vehicles has been sharply increases, the significance of safety and effective operation issues in the parking lot is being emphasized, which takes a part of the transportation system. Recently, there have been several studies for the parking management by detecting moving object, however, recognizing numbers of fast-moving vehicles simultaneously in the picture is still a challenging problem. The parking lot in public area, or large-sized buildings has clear parking section, whereas the sensor system is configured to monitor a plurality of parking spaces. Therefore, by considering those parking lots, we suggested to develop the real-time parking availability information system by applying the real-time image processing techniques. with the help of template matching. Following the study, we wanted to provide the alternative method for parking management system through the reference template makers by recognizing movements of parked vehicles with the size and shape, regardless of direct detecting of driving movements. In addition, we evaluated the applicability and performances of the information system, presented in this study, and implemented a prototype system to simulate the parking statuses of each floor. In fat, it was possible to manage and analyze statistics about the total number of parking spaces and the number of vehicles parked through real-time video flames. We expected that the result of the study will be advanced, following the user-friendliness and cost reduction in operating parking management system and giving information by efficient analysis of parking situation.

Positive Random Forest based Robust Object Tracking (Positive Random Forest 기반의 강건한 객체 추적)

  • Cho, Yunsub;Jeong, Soowoong;Lee, Sangkeun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.6
    • /
    • pp.107-116
    • /
    • 2015
  • In compliance with digital device growth, the proliferation of high-tech computers, the availability of high quality and inexpensive video cameras, the demands for automated video analysis is increasing, especially in field of intelligent monitor system, video compression and robot vision. That is why object tracking of computer vision comes into the spotlight. Tracking is the process of locating a moving object over time using a camera. The consideration of object's scale, rotation and shape deformation is the most important thing in robust object tracking. In this paper, we propose a robust object tracking scheme using Random Forest. Specifically, an object detection scheme based on region covariance and ZNCC(zeros mean normalized cross correlation) is adopted for estimating accurate object location. Next, the detected region will be divided into five regions for random forest-based learning. The five regions are verified by random forest. The verified regions are put into the model pool. Finally, the input model is updated for the object location correction when the region does not contain the object. The experiments shows that the proposed method produces better accurate performance with respect to object location than the existing methods.

Interaction Augmented Reality System using a Hand Motion (손동작을 이용한 상호작용 증강현실 시스템)

  • Choi, Kwang-Woon;Jung, Da-Un;Lee, Suk-Han;Choi, Jong-Soo
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.4
    • /
    • pp.425-438
    • /
    • 2012
  • In this paper, We propose Augmented Reality (AR) System for the interaction between user's hand motion and virtual object motion based on computer vision. The previous AR system provides inconvenience to user because the users have to control the marker and the sensor like a tracker. We solved the problem through hand motion and provide the convenience to the user. Also the motion of virtual object using a physical phenomenon gives a reality. The proposed system obtains geometrical information by the marker and hand. The system environments like virtual space of moving virtual ball and bricks are made by using the geometrical information and user's hand motion is obtained from the hand's information with extracted feature point through the taping hand. And it registers a virtual plane stably by getting movement of the feature points. The movement of the virtual ball basically is parabolic motion with a parabolic equation. When the collision occurs either the planes or the bricks, we show movement of the virtual ball with ball position and normal vector of plane and the ball position is faulted. So we showed corrected ball position through experiment. and we proved that this system can replaced the marker system to compare to jitter of augmented virtual object and progress speed with it.

Development of On-line Quality Sorting System for Dried Oak Mushroom - 3rd Prototype-

  • 김철수;김기동;조기현;이정택;김진현
    • Agricultural and Biosystems Engineering
    • /
    • v.4 no.1
    • /
    • pp.8-15
    • /
    • 2003
  • In Korea, quality evaluation of dried oak mushrooms are done first by classifying them into more than 10 different categories based on the state of opening of the cap, surface pattern, and colors. And mushrooms of each category are further classified into 3 or 4 groups based on its shape and size, resulting into total 30 to 40 different grades. Quality evaluation and sorting based on the external visual features are usually done manually. Since visual features of mushroom affecting quality grades are distributed over the entire surface of the mushroom, both front (cap) and back (stem and gill) surfaces should be inspected thoroughly. In fact, it is almost impossible for human to inspect every mushroom, especially when they are fed continuously via conveyor. In this paper, considering real time on-line system implementation, image processing algorithms utilizing artificial neural network have been developed for the quality grading of a mushroom. The neural network based image processing utilized the raw gray value image of fed mushrooms captured by the camera without any complex image processing such as feature enhancement and extraction to identify the feeding state and to grade the quality of a mushroom. Developed algorithms were implemented to the prototype on-line grading and sorting system. The prototype was developed to simplify the system requirement and the overall mechanism. The system was composed of automatic devices for mushroom feeding and handling, a set of computer vision system with lighting chamber, one chip microprocessor based controller, and pneumatic actuators. The proposed grading scheme was tested using the prototype. Network training for the feeding state recognition and grading was done using static images. 200 samples (20 grade levels and 10 per each grade) were used for training. 300 samples (20 grade levels and 15 per each grade) were used to validate the trained network. By changing orientation of each sample, 600 data sets were made for the test and the trained network showed around 91 % of the grading accuracy. Though image processing itself required approximately less than 0.3 second depending on a mushroom, because of the actuating device and control response, average 0.6 to 0.7 second was required for grading and sorting of a mushroom resulting into the processing capability of 5,000/hr to 6,000/hr.

  • PDF

U-Net Cloud Detection for the SPARCS Cloud Dataset from Landsat 8 Images (Landsat 8 기반 SPARCS 데이터셋을 이용한 U-Net 구름탐지)

  • Kang, Jonggu;Kim, Geunah;Jeong, Yemin;Kim, Seoyeon;Youn, Youjeong;Cho, Soobin;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.1149-1161
    • /
    • 2021
  • With a trend of the utilization of computer vision for satellite images, cloud detection using deep learning also attracts attention recently. In this study, we conducted a U-Net cloud detection modeling using SPARCS (Spatial Procedures for Automated Removal of Cloud and Shadow) Cloud Dataset with the image data augmentation and carried out 10-fold cross-validation for an objective assessment of the model. Asthe result of the blind test for 1800 datasets with 512 by 512 pixels, relatively high performance with the accuracy of 0.821, the precision of 0.847, the recall of 0.821, the F1-score of 0.831, and the IoU (Intersection over Union) of 0.723. Although 14.5% of actual cloud shadows were misclassified as land, and 19.7% of actual clouds were misidentified as land, this can be overcome by increasing the quality and quantity of label datasets. Moreover, a state-of-the-art DeepLab V3+ model and the NAS (Neural Architecture Search) optimization technique can help the cloud detection for CAS500 (Compact Advanced Satellite 500) in South Korea.

Technical-note : Real-time Evaluation System for Quantitative Dynamic Fitting during Pedaling (단신 : 페달링 시 정량적인 동적 피팅을 위한 실시간 평가 시스템)

  • Lee, Joo-Hack;Kang, Dong-Won;Bae, Jae-Hyuk;Shin, Yoon-Ho;Choi, Jin-Seung;Tack, Gye-Rae
    • Korean Journal of Applied Biomechanics
    • /
    • v.24 no.2
    • /
    • pp.181-187
    • /
    • 2014
  • In this study, a real-time evaluation system for quantitative dynamic fitting during pedaling was developed. The system is consisted of LED markers, a digital camera connected to a computer and a marker detecting program. LED markers are attached to hip, knee, ankle joint and fifth metatarsal in the sagittal plane. Playstation3 eye which is selected as a main digital camera in this paper has many merits for using motion capture, such as high FPS (Frame per second) about 180FPS, $320{\times}240$ resolution, and low-cost with easy to use. The maker detecting program was made by using Labview2010 with Vision builder. The program was made up of three parts, image acquisition & processing, marker detection & joint angle calculation, and output section. The digital camera's image was acquired in 95FPS, and the program was set-up to measure the lower-joint angle in real-time, providing the user as a graph, and allowing to save it as a test file. The system was verified by pedalling at three saddle heights (knee angle: 25, 35, $45^{\circ}$) and three cadences (30, 60, 90 rpm) at each saddle heights by using Holmes method, a method of measuring lower limbs angle, to determine the saddle height. The result has shown low average error and strong correlation of the system, respectively, $1.18{\pm}0.44^{\circ}$, $0.99{\pm}0.01^{\circ}$. There was little error due to the changes in the saddle height but absolute error occurred by cadence. Considering the average error is approximately $1^{\circ}$, it is a suitable system for quantitative dynamic fitting evaluation. It is necessary to decrease error by using two digital camera with frontal and sagittal plane in future study.

Detection of Marine Oil Spills from PlanetScope Images Using DeepLabV3+ Model (DeepLabV3+ 모델을 이용한 PlanetScope 영상의 해상 유출유 탐지)

  • Kang, Jonggu;Youn, Youjeong;Kim, Geunah;Park, Ganghyun;Choi, Soyeon;Yang, Chan-Su;Yi, Jonghyuk;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_2
    • /
    • pp.1623-1631
    • /
    • 2022
  • Since oil spills can be a significant threat to the marine ecosystem, it is necessary to obtain information on the current contamination status quickly to minimize the damage. Satellite-based detection of marine oil spills has the advantage of spatiotemporal coverage because it can monitor a wide area compared to aircraft. Due to the recent development of computer vision and deep learning, marine oil spill detection can also be facilitated by deep learning. Unlike the existing studies based on Synthetic Aperture Radar (SAR) images, we conducted a deep learning modeling using PlanetScope optical satellite images. The blind test of the DeepLabV3+ model for oil spill detection showed the performance statistics with an accuracy of 0.885, a precision of 0.888, a recall of 0.886, an F1-score of 0.883, and a Mean Intersection over Union (mIOU) of 0.793.

Algorithm of Generating Adaptive Background Modeling for crackdown on Illegal Parking (불법 주정차 무인 자동 단속을 위한 환경 변화에 강건한 적응적 배경영상 모델링 알고리즘)

  • Joo, Sung-Il;Jun, Young-Min;Choi, Hyung-Il
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.6
    • /
    • pp.117-125
    • /
    • 2008
  • The Object tracking by real-time image analysis is one of the major concerns in computer vision and its application fields. The Object detection process of real-time images must be preceded before the object tracking process. To achieve the stable object detection performance in the exterior environment, adaptive background model generation methods are needed. The adaptive background model can accept the nature's phenomena changes and adapt the system to the changes such as light or shadow movements that are caused by changes of meridian altitudes of the sun. In this paper, we propose a robust background model generation method effective in an illegal parking auto-detection application area. We also provide a evaluation method that judges whether a moving vehicle stops or not. As the first step, an initial background model is generated. Then the differences between the initial model and the input image frame is used to trace the movement of object. The moving vehicle can be easily recognized from the object tracking process. After that, the model is updated by the background information except the moving object. These steps are repeated. The experiment results show that our background model is effective and adaptable in the variable exterior environment. The results also show our model can detect objects moving slowly. This paper includes the performance evaluation results of the proposed method on the real roads.

  • PDF