In this paper, we propose an active stereo surveillance system with human-like convergence function. The proposed system uses a bottom-up saliency map model with the human-like selective attention visual function to select an interesting region in each camera. and this system compares the landmarks whether the selective region in each camera finds a same region. If the left and right cameras successfully find a same landmarks, the implemented vision system focuses on the landmark. Using the motor encoder information, we can automatically obtain the depth information and resultantly construct a depth map using the depth information. Computer simulation and experimental results show that the proposed convergence method is very effective to implement the active stereo surveillance system.
In this paper, real-time vision-eyed control system is proposed that combines the information handling capability of computer with the real-time image processing capability of CCD camera, and control effectively real system in the limited environment. The control system is applied to inverted pendulum system, namely, bench marking system. Feasibility of the system is shown in a viewpoint of simulations and experiments.
Proceedings of the Korean Society for Agricultural Machinery Conference
/
1993.10a
/
pp.1243-1253
/
1993
Visual features of a mushroom(Lentinus Edodes L) are critical in sorting and grading as most agricultural products are. Because of its complex and various visual features, grading and sorting of mushrooms have been done manually by the human expert. Though actions involved in human grading looks simple, a decision making undereath the simple action comes form the results of the complex neural processing of the visual image. And processing details involved in the visual recognition of the human brain has not been fully investigated yet. Recently, however, an artificial neural network has drawn a great attention because of its functional capability as a partial substitute of the human brain. Since most agricultural products are not uniquely defined in its physical properties and do not have a well defined job structure, a research of the neuro-net based human like information processing toward the agricultural product and processing are widely open and promising. In this pape , neuro-net based grading and sorting system was developed for a mushroom . A computer vision system was utilized for extracting and quantifying the qualitative visual features of sampled mushrooms. The extracted visual features and their corresponding grades were used as input/output pairs for training the neural network and the trained results of the network were presented . The computer vision system used is composed of the IBM PC compatible 386DX, ITEX PFG frame grabber, B/W CCD camera , VGA color graphic monitor , and image output RGB monitor.
Journal of the Korea Institute of Information and Communication Engineering
/
v.19
no.8
/
pp.1805-1810
/
2015
Increasing of depth data accessibility, depth data is used in many researches. Motion recognition of computer vision also widely use depth image. More accuracy motion recognition system needs more stable depth data. But depth sensor has a noise. This noise affect accuracy of the motion recognition system, we should noise suppression. In this paper, we propose using spatial domain and temporal domain stabilization for depth image and makes it hardware IP. We adapted our hardware to floor removing algorithm and verification its effect. we did realtime verification using FPGA and APU. Designed hardware has maximum frequency 202.184MHz.
Lee Kwang-Soon;Lee Kyung-Bok;Rho Kwang-Hyun;Han Min-Hong
Journal of the Institute of Convergence Signal Processing
/
v.6
no.1
/
pp.1-7
/
2005
This paper describes the system for detecting vehicles in the rear and rear-side that access between sidewalk and bus stopped to city road at day by computer vision-based method. This system informs appearance of vehicles to bus driver and passenger for the safety of a bus passenger getting off. The camera mounted on the top portion of the bus exit door gets the rear and rear-side image of the bus whenever a bus stops at the stop. The system sets search area between bus and sidewalk from this image and detects a vehicle by using change of image and sobel filtering in this area. From a central point of the vehicle detected, we can find out the distance, speed and direction by its location, width and length. It alarms the driver and passengers when it's judged that dangerous situation for the passenger getting off happens. This experiment results in a detection rate more than 87% in driving by bus on the road.
Software-related training can be considered essential in situations where software is an important factor in national innovation, growth and value creation. As one of the implementation methods for engineering education, various education through virtual simulations that can educate difficult situations in a similar environment are being conducted. Recently, the construction of smart factories at production and manufacturing sites is spreading, and product inspections using vision systems are being conducted. However, it has many difficulties due to lack of operation technology of vision system, but it requires a lot of cost to construct the system for education of vision system. In this paper, provide an educational virtual simulation model that integrates computer and physics engine camera functions and can extract and transmit video. It is possible to generate an image of 30Hz or more at an average of 35.4FPS of the experimental results of the proposed model, and it is possible to send and receive images in a time of 22.7ms, which can be utilized in an educational virtual simulation educational environment.
A machine vision-based instrument to measure a droplet size spectrum of a spray nozzle was developed and tested to evaluate its accuracy on measuring spray droplet sizes and classifying nozzle sizes. The instrument consisted of a machine vision, light emitting diode (LED) illumination and a desktop computer. The illumination and machine vision were controlled by the computer through a C++ program. The program controlled the machine vision to capture droplet images under controlled illumination, and processed the droplet images to characterize the droplet size distribution of a spray nozzle. An image processing algorithm was developed to improve the accuracy of the system by eliminating random noise and out-of-focus droplets in droplet images while measuring droplet sizes. The instrument measured sizes of the three different balls (254.0, 497.8 and $793.8\;{\mu}m$) and the measurement ranges were $241.2-273.6\;{\mu}m$, $492.9-529.6\;{\mu}m$ and $800.8-824.1\;{\mu}m$ for 254.0-, 497.84- and $793.75-\;{\mu}m$ balls, respectively. Error of the measured droplet mean was less than 3.0 %. Droplet statistics, $D_{V0.1}$, $D_{V0.5}$ and $D_{V0.9}$, of a reference nozzle set were measured, and droplet size spectra of five spray nozzles covering from very fine to extremely coarse were measured to classify spray nozzle sizes. Ninety percent of the classification results of the instrument agreed with manufacturer's classification. A comparison study was carried out between developed and commercial instruments, and measurement results of the developed instrument were within 20 % of commercial instrument results.
Image topic and emotion analysis is an important component of online image retrieval, which nowadays has become very popular in the widely growing social media community. However, due to the gaps between images and texts, there is very limited work in literature to detect one image's Topics and Emotions in a unified framework, although topics and emotions are two levels of semantics that often work together to comprehensively describe one image. In this work, a unified model, Joint Topic/Emotion Multi-Modal Hierarchical Latent Dirichlet Allocation (JTE-MMHLDA) model, which extends previous LDA, mmLDA, and JST model to capture topic and emotion information at the same time from heterogeneous data, is proposed. Specifically, a two level graphical structured model is built to realize sharing topics and emotions among the whole document collection. The experimental results on a Flickr dataset indicate that the proposed model efficiently discovers images' topics and emotions, and significantly outperform the text-only system by 4.4%, vision-only system by 18.1% in topic detection, and outperforms the text-only system by 7.1%, vision-only system by 39.7% in emotion detection.
Kim, Hyeon T.;Choi, Hong L.;Lee, Dae W.;Yoon, Yong C.
Asian-Australasian Journal of Animal Sciences
/
v.18
no.8
/
pp.1194-1198
/
2005
A computer vision system was designed and validated to recognize an individual Holstein cattle by processing images of their body patterns. This system involves image capture, image pre-processing, algorithm processing, and an artificial neural network recognition algorithm. Optimum management of individuals is one of the most important factors in keeping cattle healthy and productive. In this study, an image-processing system was used to recognize individual Holstein cattle by identifying the body-pattern images captured by a charge-coupled device (CCD). A recognition system was developed and applied to acquire images of 49 cattles. The pixel values of the body images were transformed into input data comprising binary signals for the neural network. Images of the 49 cattle were analyzed to learn input layer elements, and ten cattles were used to verify the output layer elements in the neural network by using an individual recognition program. The system proved to be reliable for the individual recognition of cattles in natural light.
An integrated on-line inspection system was constructed with seven cameras, half mirrors to split images. 720 nm and 970 nm band pass filters, illumination chamber having several tungsten-halogen lamps, one main computer, one color frame grabber, two 4-channel multiplexors, and flat plate conveyer, etc. A total of seven images, that is, one color image form the top of an apple and two B/W images from each side (top, right and left) could be captured and displayed on a computer monitor through the multiplexor. One of the two B/W images captured from each side is 720nm filtered image and the other is 970 nm. With this system an on-line grading software was developed to evaluate appearance quality. On-line test results with Fuji apples that were manually fed on the conveyer showed that grading accuracies of the color, defect and shape were 95.3%, 86% and 88.6%, respectively. Grading time was 0.35 second per apple on an average. Therefore, this on-line grading system could be used for inspection of the final products produced from an apple sorting system.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.