• Title/Summary/Keyword: Computer Vision Technology

Search Result 685, Processing Time 0.027 seconds

Development of Bolt Tap Shape Inspection System Using Computer Vision Technology (컴퓨터 비전 기술을 이용한 볼트 탭 형상 검사 시스템 개발)

  • Park, Yang-Jae
    • Journal of Digital Convergence
    • /
    • v.16 no.3
    • /
    • pp.303-309
    • /
    • 2018
  • Computer vision technology is a component inspection to obtain a video image from the camera to the machine to perform the capabilities of the human eye with a field of artificial intelligence, and then analyzed by the algorithm to determine to determine the good and bad of production parts It is widely applied. Shape inspection method was used as how to identify the location of the start point and the end point of the search range, measure the height to the line scan method, in such a manner as to determine the presence or absence of the bolt tabs average brightness of the inspection area in a circular scan type value And the degree of similarity was calculated. The total time it takes to test in the test performance tests of two types of bolts tab enables test 300 min, and demonstrated the accuracy and efficiency of the inspection on the production line represented a complete inspection accuracy.

A Study on Scratch Detection of Semiconductor Package using Mask Image (마스크 이미지를 이용한 반도체 패키지 스크래치 검출 연구)

  • Lee, Tae-Hi;Park, Koo-Rack;Kim, Dong-Hyun
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.11
    • /
    • pp.43-48
    • /
    • 2017
  • Semiconductors are leading the development of industrial technology, leading to miniaturization and weight reduction of electronic products as a leading technology, we are dragging the electronic industry market Especially, the semiconductor manufacturing process is composed of highly accurate and complicated processes, and effective production is required Recently, a vision system combining a computer and a camera is utilized for defect detection In addition, the demand for a system for measuring the shape of a fine pattern processed by a special process is rapidly increasing. In this paper, we propose a vision algorithm using mask image to detect scratch defect of semiconductor pockage. When applied to the manufacturing process of semiconductor packages via the proposed system, it is expected that production management can be facilitated, and efficiency of production will be enhanced by failure judgment of high-speed packages.

Smart Vision Sensor for Satellite Video Surveillance Sensor Network (위성 영상감시 센서망을 위한 스마트 비젼 센서)

  • Kim, Won-Ho;Im, Jae-Yoo
    • Journal of Satellite, Information and Communications
    • /
    • v.10 no.2
    • /
    • pp.70-74
    • /
    • 2015
  • In this paper, satellite communication based video surveillance system that consisted of ultra-small aperture terminals with small-size smart vision sensor is proposed. The events such as forest fire, smoke, intruder movement are detected automatically in field and false alarms are minimized by using intelligent and high-reliable video analysis algorithms. The smart vision sensor is necessary to achieve high-confidence, high hardware endurance, seamless communication and easy maintenance requirements. To satisfy these requirements, real-time digital signal processor, camera module and satellite transceiver are integrated as a smart vision sensor-based ultra-small aperture terminal. Also, high-performance video analysis and image coding algorithms are embedded. The video analysis functions and performances were verified and confirmed practicality through computer simulation and vision sensor prototype test.

Blur Detection through Multinomial Logistic Regression based Adaptive Threshold

  • Mahmood, Muhammad Tariq;Siddiqui, Shahbaz Ahmed;Choi, Young Kyu
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.4
    • /
    • pp.110-115
    • /
    • 2019
  • Blur detection and segmentation play vital role in many computer vision applications. Among various methods, local binary pattern based methods provide reasonable blur detection results. However, in conventional local binary pattern based methods, the blur map is computed by using a fixed threshold irrespective of the type and level of blur. It may not be suitable for images with variations in imaging conditions and blur. In this paper we propose an effective method based on local binary pattern with adaptive threshold for blur detection. The adaptive threshold is computed based on the model learned through the multinomial logistic regression. The performance of the proposed method is evaluated using different datasets. The comparative analysis not only demonstrates the effectiveness of the proposed method but also exhibits it superiority over the existing methods.

OnBoard Vision Based Object Tracking Control Stabilization Using PID Controller

  • Mariappan, Vinayagam;Lee, Minwoo;Cho, Juphil;Cha, Jaesang
    • International Journal of Advanced Culture Technology
    • /
    • v.4 no.4
    • /
    • pp.81-86
    • /
    • 2016
  • In this paper, we propose a simple and effective vision-based tracking controller design for autonomous object tracking using multicopter. The multicopter based automatic tracking system usually unstable when the object moved so the tracking process can't define the object position location exactly that means when the object moves, the system can't track object suddenly along to the direction of objects movement. The system will always looking for the object from the first point or its home position. In this paper, PID control used to improve the stability of tracking system, so that the result object tracking became more stable than before, it can be seen from error of tracking. A computer vision and control strategy is applied to detect a diverse set of moving objects on Raspberry Pi based platform and Software defined PID controller design to control Yaw, Throttle, Pitch of the multicopter in real time. Finally based series of experiment results and concluded that the PID control make the tracking system become more stable in real time.

Researches on division-size unit COA development plan applying Vision 21 (비전21 모델을 활용한 사단급 부대 방책발전 방안 연구)

  • 최연호;김지호
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2003.11a
    • /
    • pp.3-10
    • /
    • 2003
  • Developments in science and technology based on computer technology influenced military fields and created up-to-date weapons and equipment, and as a result, which is changing the war accomplishing methods of the future warfare. Due to these changes in the war accomplishing methods, the army command centers are requested to make changes in their decision-making process. In other words, they need to apply more scientific methods rather than just build a scheme by the mere analysis of commanders and the staffs as in the past. Consequently, we propose a model, Vision 21 we developed as a war game model for division-size unit analysis use, in the COA development process, which is the most important part in establishing the OPLAN for mission accomplishment. Vision 21, with a comparative analysis of the other COA built in the COA development process, can be applied to making the best COA. Model employment concept can let us choose the best COA, operating war games on condition that the COA of the opposite forces is fixed and ours sequentially opposed against, and with a comparative analysis also. Moreover, if the time available is limited, before establishing several courses, we can apply the COA to the process for making the best decision, analysing in stages or by main phases and not establishing several courses for a special purpose.

  • PDF

RGB Motion Segmentation using Background Subtraction based on AMF

  • Kim, Yoon-Ho
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.7 no.1
    • /
    • pp.61-67
    • /
    • 2014
  • Motion segmentation is a fundamental technique for analysing image sequences of real scenes. A process of identifying moving objects from data is a typical task in many computer vision applications. In this paper, we propose motion segmentation that generally consists from background subtraction and foreground pixel segmentation. The Approximated Median Filter(AMF) was chosen to perform background modeling. Motion segmentation in this paper covers RGB video data.

Improved Inference for Human Attribute Recognition using Historical Video Frames

  • Ha, Hoang Van;Lee, Jong Weon;Park, Chun-Su
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.3
    • /
    • pp.120-124
    • /
    • 2021
  • Recently, human attribute recognition (HAR) attracts a lot of attention due to its wide application in video surveillance systems. Recent deep-learning-based solutions for HAR require time-consuming training processes. In this paper, we propose a post-processing technique that utilizes the historical video frames to improve prediction results without invoking re-training or modifying existing deep-learning-based classifiers. Experiment results on a large-scale benchmark dataset show the effectiveness of our proposed method.

A Real-time Vehicle Localization Algorithm for Autonomous Parking System (자율 주차 시스템을 위한 실시간 차량 추출 알고리즘)

  • Hahn, Jong-Woo;Choi, Young-Kyu
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.2
    • /
    • pp.31-38
    • /
    • 2011
  • This paper introduces a video based traffic monitoring system for detecting vehicles and obstacles on the road. To segment moving objects from image sequence, we adopt the background subtraction algorithm based on the local binary patterns (LBP). Recently, LBP based texture analysis techniques are becoming popular tools for various machine vision applications such as face recognition, object classification and so on. In this paper, we adopt an extension of LBP, called the Diagonal LBP (DLBP), to handle the background subtraction problem arise in vision-based autonomous parking systems. It reduces the code length of LBP by half and improves the computation complexity drastically. An edge based shadow removal and blob merging procedure are also applied to the foreground blobs, and a pose estimation technique is utilized for calculating the position and heading angle of the moving object precisely. Experimental results revealed that our system works well for real-time vehicle localization and tracking applications.

Development of Automation Technology for Structural Members Quantity Calculation through 2D Drawing Recognition (2D 도면 인식을 통한 부재 물량 산출 자동화 기술 개발)

  • Sunwoo, Hyo-Bin;Choi, Go-Hoon;Heo, Seok-Jae
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.227-228
    • /
    • 2022
  • In order to achieve the goal of cost management, which is one of the three major management goals of building production, this paper introduces an approximate cost estimating automation technology in the design stage as the importance of predicting construction costs increases. BIM is used for accurate estimating, and the quantity of structural members and finishing materials is calculated by creating a 3D model of the actual building. However, only 2D basic design drawings are provided when making an estimating. Therefore, for accurate quantity calculation, digitization of 2D drawings is required. Therefore, this research calculates the quantity of concrete structural members by calculating the area for the recognition area through 2D drawing recognition technology incorporating computer vision. It is judged that the development technology of this research can be used as an important decision-making tool when predicting the construction cost in the design stage. In addition, it is expected that 3D modeling automation and 3D structural analysis will be possible through the digitization of 2D drawings.

  • PDF