• Title/Summary/Keyword: Computer Modeling

Search Result 3,421, Processing Time 0.032 seconds

A Study on the Stereo Image Map Generation of Chuncheon Area using Satellite Overlay Images (위성영상을 이용한 춘천지역의 3차원 입체영상지도 생성에 관한 연구)

  • Yeon, Sang-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.3 no.4
    • /
    • pp.1-10
    • /
    • 2000
  • Satellite remote sensing images have much more information compared to a paper map. But these images are generally handled as particular image format gained from optical sensor, and must be processed and analyzed by computer with high priced digital image processing system. For the extraction of digital elevation model(DEM) from satellite image, we used the overlay image by SPOT-3 of Chuncheon area at the Kangwon province. According to the image condition, the precious geometric correction, the bundle adjustment for ortho-image generation and the stereo image mapping by several technical approaches were processed. So that we developed the methods of automatic DEM extraction and efficient stereo image map generation which can improve the digital image processing steps. Also, we applied the multiple direction birdeye view image for modeling and analysis using the remotely sensed overlay images with high resolution.

  • PDF

A Study on the Knowledge Elements of HPC in Computational Science through Analysis of Educational Needs (교육요구분석을 통한 계산과학분야의 고성능컴퓨팅 지식요소에 관한 연구)

  • Yoon, Heejun;Ahn, Seongjin
    • Journal of The Korean Association of Information Education
    • /
    • v.22 no.5
    • /
    • pp.545-556
    • /
    • 2018
  • The purpose of this study is to suggest the knowledge elements for HPC education in computational science. For this purpose, the survey for HPC experts was conducted to verify the content validity and reliability, and the 20 candidate knowledge elements was extracted. And the second survey for HPC users was conducted to apply the t test, Borich requirement, and The Locus for Focus model. And 10 knowledge elements for HPC education were derived. As a result, the first group was 'Parallelism Fundamentals', 'Parallelism', 'Parallel communication and coordination', 'Parallel Decomposition', 'Parallel Algorithms, Analysis, and Programming' and 'Introduction to Modeling and Simulation', 'Fundamental Programming Concepts', 'Fundamental Data Structures', 'Memory Management', 'Algorithms and Design' were second group for HPC education.

Robust feature vector composition for frontal face detection (노이즈에 강인한 정면 얼굴 검출을 위한 특성벡터 추출법)

  • Lee Seung-Ik;Won Chulho;Im Sung-Woon;Kim Duk-Gyoo
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.42 no.6
    • /
    • pp.75-82
    • /
    • 2005
  • The robust feature vector selection method for the multiple frontal face detection is proposed in this paper. The proposed feature vector for the training and classification are integrated by means, amplitude projections, and its 1D Harr wavelet of the input image. And the statistical modeling is performed both for face and nonface classes. Finally, the estimated probability density functions (PDFs) are applied for the detection of multiple frontal faces in the still image. The proposed method can handle multiple faces, partially occluded faces, and slightly posed-angle faces. And also the proposed method is very effective for low quality face images. Experimental results show that detection rate of the propose method is $98.3\%$ with three false detections on the testing data, SET3 which have 227 faces in 80 images.

The time domain testing technique of RFIC based on specifications (설계사양기반 RF 집적회로의 시간영역 테스팅 기법)

  • Han Seok-Bung;Baek Han-Suk;Kim Kang-Chul
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.5 s.347
    • /
    • pp.34-47
    • /
    • 2006
  • In this paper, a new testing technique for core components of wireless transceiver was proposed. That was, band fault models (including the information of specifications in the analogue and RF IC) and methods which can test specifications in the time domain easily by observing a variation of band fault models in the circuit output were proposed and developed. This technique had an advantage over testing technique in frequency domain because it didn't need expensive test equipments and could reduce the time required. Test technique proposed in this paper was adapted to the test of 5.25 GHz low noise amplifier and proved that this testing technique was efficient in RF IC including low noise amplifier.

A Cluster-Based Multicast Routing for Mobile Ad-hoc Networks (모바일 Ad-hoc 네트워크를 위한 클러스터 기반 멀티캐스트 라우팅)

  • An, Beong-Ku;Kim, Do-Hyeun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.9 s.339
    • /
    • pp.29-40
    • /
    • 2005
  • In this paper, we propose a Cluster-based Multicast Routing (CMR) suitable for mobile ad-hoc networks. The main features that our proposed method introduces are the following: a) mobility-based clustering and group based hierarchical structure in order to effectively support stability and scalability, b) group based mesh structure and forwarding tree concepts in order to support the robustness of the mesh topologies which provides limited redundancy and the efficiency of tree forwarding simultaneously, and c) combination of proactive and reactive concepts which provide low route acquisition delay and low overhead. The performance evaluation of the proposed protocol is achieved via modeling and simulation. The corresponding results demonstrate the Proposed multicast protocol's efficiency in terms of packet delivery ratio, scalability, control overhead, end-to-end delay, as a function of mobility, multicast group size, and number of senders.

Smart HCI Based on the Informations Fusion of Biosignal and Vision (생체 신호와 비전 정보의 융합을 통한 스마트 휴먼-컴퓨터 인터페이스)

  • Kang, Hee-Su;Shin, Hyun-Chool
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.47 no.4
    • /
    • pp.47-54
    • /
    • 2010
  • We propose a smart human-computer interface replacing conventional mouse interface. The interface is able to control cursor and command action with only hand performing without object. Four finger motions(left click, right click, hold, drag) for command action are enough to express all mouse function. Also we materialize cursor movement control using image processing. The measure what we use for inference is entropy of EMG signal, gaussian modeling and maximum likelihood estimation. In image processing for cursor control, we use color recognition to get the center point of finger tip from marker, and map the point onto cursor. Accuracy of finger movement inference is over 95% and cursor control works naturally without delay. we materialize whole system to check its performance and utility.

Performance Simulation of Planar Solid Oxide Fuel Cells Characteristics: Computational Fluid Dynamics (전산 유체 모델링을 이용한 평판형 고체산화물 연료전지 작동특성 전산모사)

  • Woo Hyo Sang;Chung Yong-Chae
    • Journal of the Korean Electrochemical Society
    • /
    • v.7 no.2
    • /
    • pp.69-79
    • /
    • 2004
  • To correctly simulate performance characteristics of fuel cells with a modeling method, various physical and chemical phenomena must be considered in fuel cells. In this study, performance characteristics of planar solid oxide fuel cells were simulated by a commercial CFD code, CFD-ACE+. Through simultaneous considerations for mass transfer, heat transfer and charge movement according to electrochemical reactions in the 3-dimensional planar SOFC unit stack, we could successfully predict performance characteristics of solid oxide fuel cells under operation for structural and progress variables. In other words, we solved mass fraction distribution of reactants and products for diffusion and movement, and investigated qualitative and quantitative analysis for performance characteristics in the SOFC unit stack through internal temperature distribution and polarization curve for electrical characteristics. Through this study, we could effectively predict performance characteristics with variables in the unit stack of planar SOFCs and present systematic approach for SOFCs under operation by computer simulation.

Does the prosthesis weight matter? 3D finite element analysis of a fixed implant-supported prosthesis at different weights and implant numbers

  • Tribst, Joao Paulo Mendes;Dal Piva, Amanda Maria de Oliveira;Borges, Alexandre Luiz Souto;Rodrigues, Vinicius Aneas;Bottino, Marco Antonio;Kleverlaan, Cornelis Johannes
    • The Journal of Advanced Prosthodontics
    • /
    • v.12 no.2
    • /
    • pp.67-74
    • /
    • 2020
  • PURPOSE. This study evaluated the influence of prosthesis weight and number of implants on the bone tissue microstrain. MATERIALS AND METHODS. Fifteen (15) fixed full-arch implant-supported prosthesis designs were created using a modeling software with different numbers of implants (4, 6, or 8) and prosthesis weights (10, 15, 20, 40, or 60 g). Each solid was imported to the computer aided engineering software and tetrahedral elements formed the mesh. The material properties were assigned to each solid with isotropic and homogeneous behavior. The friction coefficient was set as 0.3 between all the metallic interfaces, 0.65 for the cortical bone-implant interface, and 0.77 for the cancellous bone-implant interface. The standard earth gravity was defined along the Z-axis and the bone was fixed. The resulting equivalent strain was assumed as failure criteria. RESULTS. The prosthesis weight was related to the bone strain. The more implants installed, the less the amount of strain generated in the bone. The most critical situation was the use of a 60 g prosthesis supported by 4 implants with the largest calculated magnitude of 39.9 mm/mm, thereby suggesting that there was no group able to induce bone remodeling simply due to the prosthesis weight. CONCLUSION. Heavier prostheses under the effect of gravity force are related to more strain being generated around the implants. Installing more implants to support the prosthesis enables attenuating the effects observed in the bone. The simulated prostheses were not able to generate harmful values of peri-implant bone strain.

Balancing control of one-wheeled mobile robot using control moment gyroscope (제어 모멘트 자이로스코프를 이용한 외바퀴 이동로봇의 균형 자세 제어)

  • Park, Sang-Hyung;Yi, Soo-Yeong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.27 no.2
    • /
    • pp.89-98
    • /
    • 2017
  • The control moment gyroscope(CMG) can be used for essential balancing control of a one-wheeled mobile robot. A single-gimbal CMG has a simple structure and can supply strong restoring torque against external disturbances. However, the CMG generates unwanted directional torque also besides the restoring torque; the unwanted directional torque causes instability in the one-wheeled robot control system that has high rotational degrees of freedom. This study proposes a control system for a one-wheeled mobile robot by using a CMG scissored pair to eliminate the unwanted directional torque. The well-known LQR control algorithm is designed for robustness against modeling error in the dynamic motion equations of a one-wheeled robot. Computer simulations for 3D nonlinear dynamic equations are carried out to verify the proposed control system with the CMG scissored pair and the LQR control algorithms.

Theoretical Framework for Application and Development of Two-dimensional Numerical Landscape Evolution Models on a Geological Time Scale (2차원 지질시간 규모 수치지형발달모형의 활용과 개발을 위한 이론적 토대)

  • Byun, Jong-Min
    • Journal of the Korean Geographical Society
    • /
    • v.46 no.3
    • /
    • pp.331-350
    • /
    • 2011
  • Advances in computer technology enabled us to simulate the integrated effects of various geomorphic processes on landscape evolution. This review introduces a theoretical framework for 2-dimensional numerical landscape evolution models (NLEMs) which have recently been used for various research purposes. In particular much attention is paid to the approaches deployed to model major geomorphic processes on a geological time scale in previous research. NLEMs can simulate landscape evolution by numerically solving the partial differential equation which represents the relationship among the geomorphic system components (GSCs). Simple process specifications of the relationships among GSCs on a long-term time scale in terms of quantification and attempts to combine processes represent the initial research on NLEMs. Later researchers have taken these simple NLEMs and elaborated on them. Introducing the theories of NLEMs in this review is expected to help researchers trying to utilize or develop NLEMs.