변동성 가치에 대한 미래 예측을 분석하는 연구는 여러 분야에서 이루어지고 있다. 하지만 이러한 미래 가치분석은 각 분야의 연구결과를 통해 각 분야에 따른 변수가 너무 많아 예측결과의 정확도가 낮으며 결과에 영향을 미치는 객관적인 핵심영향요소를 찾아내는 데 어려움이 있음을 알 수 있었다. 특히 다양한 영향인자의 중요도에 대한 객관적인 기준이 마련되지 않아 연구자의 주관에 의지하여 핵심영향인자를 판단하여 적용하는 실정이다. 이에 여러 분야에서 객관적으로 적용할 수 있는 변동성 재화가치 예측에 영향을 미치는 핵심영향인자 추출을 위한 합리적인 Process 모델이 필요하게 되었다. 본 연구에서 총 7단계로 핵심영향인자 추출을 위한 Process 모델링을 제시 하였으며, 각 단계별로 핵심영향인자 추출을 위한 방법을 구체적으로 정의하였다. 또한, 제안된 모델링을 이용하여 원자재 분야의 주요 변동재화 중 Ni금속을 적용하여 Simulation을 한 결과 기존 방식에 의한 예측 값 0.872%, 본 연구 모델링을 적용한 예측 값 0.864%로 예측 결과 값이 모델에서 제시한 기준에 부합함을 확인 하였다.
본 연구는 2015 개정 과학과 교육과정의 8가지 '기능'을 활용한 과학 탐구 수업을 실시했을 때 고등학생들의 과학과 핵심역량에 대한 인식 변화와 변화 이유에 대하여 조사하였다. 본 연구의 과학 탐구 수업에 전라남도 소재 고등학교 1학년 15명이 참여하였으며, 수업은 20시간(하루 5시간 4일) 진행하였다. 수업에서 이용한 탐구 활동은 연구 문제, 연구 방법, 연구 결과, 결론의 4개 활동 단계로 구성되어 있으며 각 활동 단계에 8가지 '기능 (문제 인식, 모형의 개발과 사용, 탐구 설계와 수행, 자료의 수집·분석 및 해석, 수학적 사고와 컴퓨터 활용, 결론 도출 및 평가, 증거에 기초한 토론과 논증, 의사소통)'이 최소 1회 이상 포함되도록 구성하였다. 연구 결과, 탐구 수업을 통해 학생들의 5가지 과학과 핵심역량에 대한 인식이 유의수준 0.01 기준으로 통계적으로 유의미하게 증가하였으며, 93% 이상의 학생들이 수업을 통해 과학과 핵심역량이 향상하였다고 인식했다. 하지만 본 연구의 수업은 소수 학생을 대상으로 실시하였기 때문에 수업의 효과를 일반화하기는 어려우므로, 많은 학생을 대상으로 한 정량적 연구 수행이 필요하다.
방송은 상호연결망에서 사용되는 가장 기본적인 정보전달 기법으로 크게 일-대-다 방송과 다-대-다 방송으로 나눌 수 있다. 일-대-다 방송은 메시지를 갖고 있는 한 노드에서 다른 모든 노드로 메시지를 전송하는 것이고, 다-대-다 방송은 메시지를 갖고 있는 각각의 노드들이 다른 모든 노드들로 메시지를 전송하는 것이다. 그리고 단위 시간 당 전송 포트를 사용하는 방법에 따라 단일 포트 통신 방식(SLA)과 멀티 포트 통신 방식(MLA)으로 나눌 수 있다. 단일 포트 통신 방식은 단위 시간에 메시지를 가지고 있는 노드가 이웃한 다른 하나의 노드로만 메시지를 전송하는 것이고, 멀티 포트 통신 방식은 단위 시간에 메시지를 가지고 있는 노드가 이웃한 모든 노드로 메시지를 전송하는 것이다. 매트릭스 하이퍼큐브는 하이퍼큐브와 동일한 노드 개수를 가지면서 하이퍼큐브보다 망비용이 개선된 연결망이다. 본 논문에서는 매트릭스 하이퍼큐브의 방송 기법을 분석한다. 먼저 매트릭스 하이퍼큐브에서의 일-대-다 방송 알고리즘과 다-대-다 방송 알고리즘을 제안한다. 그리고 SLA 기법을 이용한 일-대-다 방송 시간이 2n+1임과 MLA 기법을 이용한 일-대-다 방송 시간이 $2{\lceil}{\frac{n}{2}}{\rceil}+1$임을 보인다. 또한 SLA 기법을 이용한 다-대-다 방송 시간이 $5{\times}2^{\frac{n}{2}}-2$(n=짝수), $5{\times}2^{\frac{n-1}{2}}+2$(n=홀수)임을 증명한다.
보편적 인공지능교육의 필요성이 확대되고 직무 변화가 이루어지고 있는 현 시점에서, 가장 먼저 인공지능을 직무의 일부분으로 경험하게 되는 대학의 비전공자를 위한 인공지능 교양교육에 대한 연구 및 논의는 미흡한 실정이다. 비전공자 대상 인공지능 교육과정이 운영되고 있지만 주로 인공지능의 개념 및 원리에 대한 이론 중심의 교육으로 운영되고 있다. 비전공자 대상 인공지능에 대한 일반적인 개념을 이해하기 위해 체험학습을 병행하여 진행 할 필요가 있다. 따라서 본 연구는 비전공자의 특성을 고려하여 학습에 흥미를 갖고, 인공지능 수업에 대한 부담감을 낮출 수 있는 난이도의 인공지능 체험교육 학습콘텐츠를 설계한 후 앱인벤터와 오렌지 인공지능 플랫폼을 활용한 체험 교육의 학습효과를 살펴보고자 한다. 팀 별 인공지능 관련 프로젝트 작성을 통해 수집된 학습관련 데이터와 설문조사 자료를 바탕으로 분석한 결과 인공지능 교육의 필요성에 대한 인식의 긍정적인 변화와 인공지능 리터러시 능력이 향상된 것으로 나타났다. 교수자에게는 인공지능 체험교육 학습을 위한 학습모형을 설계하는 데 기틀을 마련해 주는 계기가 될 것으로 기대한다.
스프레드시트를 활용한 인공신경망 교육을 통해, 비전공자 학부생들은 인공신경망의 동작 원리을 이해하며 자신만의 인공신경망 SW를 개발할 수 있다. 여기서, 인공신경망의 동작 원리 교육은 훈련데이터의 생성과 정답 라벨의 할당부터 시작한다. 이후, 인공 뉴런의 발화 및 활성화 함수, 입력층과 은닉층 그리고 출력층의 매개변수들로부터 계산되는 출력값을 학습한다. 마지막으로, 최초 정의된 각 훈련데이터의 정답 라벨과 인공신경망이 계산한 출력값 간 오차를 계산하는 과정을 학습하고 오차제곱의 총합을 최소화하는 입력층과 은닉층 그리고 출력층의 매개변수들이 계산되는 과정을 학습한다. 스프레드시트를 활용한 인공신경망 동작 원리 교육을 비전공자 학부생 대상으로 실시하였다. 그리고 이미지 훈련데이터와 기초 인공신경망 개발 결과를 수집하였다. 본 논문에서는 12화소 크기의 소용량 이미지로 두 가지 훈련데이터와 해당 인공신경망 SW를 수집한 결과를 분석하고, 수집한 훈련데이터를 Orange 머신러닝 모델 학습 및 분석 도구에 활용하는 방법과 실행 결과를 제시하였다.
기술의 발전은 제작 기법, 편집 기술 등 미디어 산업 전반에 걸쳐 디지털 혁신을 이루어 왔고, OTT 서비스와 스트리밍 시대를 관통하며 소비자 관람 형태의 다양성을 가져왔다. 빅데이터와 딥러닝 네트워크의 융합으로 뉴스 기사, 소설, 대본 등 형식을 갖춘 글을 자동으로 생성하였으나 작가의 의도를 반영하고 문맥적으로 매끄러운 스토리를 생성한 연구는 부족하였다. 본 논문에서는 이미지 캡션 생성 기술로 스토리보드 속 사진의 흐름을 파악하고, 언어모델을 통해 이야기 흐름이 자연스러운 스토리를 자동 생성하는 것을 기술한다. 합성곱 신경망(CNN)과 주의 집중기법(Attention)을 활용한 이미지 캡션 생성 기술을 통해 스토리보드의 사진을 묘사하는 문장을 생성하고, 첫 번째 이미지 캡션을 KoGPT-2에 입력하여 생성된 새로운 글과 두 번째 이미지의 캡션을 다음 입력값으로 활용한 재귀적 접근 방안을 제안하여 전후 문맥이 자연스럽고 기획 의도에 맞는 스토리를 생성하는 연구를 진행한다. 본 논문으로 인공지능을 통해 작가의 의도를 반영한 스토리를 자동으로 대량 생성하여 콘텐츠 창작의 고통을 경감시키고, 인공지능이 디지털 콘텐츠 제작의 전반적인 과정에 참여하여 미디어 지능화를 활성화한다.
도로와 주변의 상황을 정확히 인지하는 객체탐지 기술은 자율주행 분야에 핵심적인 기술이다. 자율주행 분야에 객체탐지 기술은 추론 서비스의 정확도와 함께 실시간성도 요구된다. 고성능 머신이 아닌 자원제약 기기에서 정확도와 함께 실시간성을 위한 객체탐지 기술을 적용하기 위해서는 태스크 오프로딩 기술을 활용해야 한다. 본 논문에서는 자원 제약적 기기에서 자율주행의 실시간 객체탐지를 위한 태스크 오프로딩 적용과 관련하여 태스크 오프로딩의 성능 비교, 입력 이미지 해상도에 따른 성능 비교, 카메라 객체 해상도에 따른 성능 비교 등의 실험을 수행하고 결과를 분석하였다. 본 실험에서 낮은 해상도의 이미지는 태스크 오프로딩 구조의 적용을 통하여 성능 개선을 도출할 수 있었고, 이는 자율주행의 실시간 기준을 충족하였다. 높은 해상도의 이미지는 성능 개선은 있었으나 통신 시간의 증가에 따른 이유로 자율 주행의 실시간 기준을 충족하지 못하였다. 이러한 실험을 통해 자율주행에서의 객체인식은 사용하는 객체인식 모델과 함께 입력 이미지, 통신 환경 등의 다양한 조건이 영향을 미친다는 것을 확인할 수 있었다.
인프라 구조물은 대부분 경제 성장기에 완공되었다. 이러한 인프라 구조물은 최근 들어 공용연수가 점차 증가하고 있어 노후 구조물의 비중이 점차 증가하고 있다. 이러한 노후 구조물은 설계 당시의 기능과 성능이 저하될 수 있고 안전사고로까지 이어질 수 있다. 이를 예방하기 위해서는 정확한 점검과 적절한 보수가 필수적이다. 이를 위해서는 우선 미세한 균열까지 정확히 탐지할 수 있도록 컴퓨터 비전과 딥러닝 기술에 수요가 증가하고 있다. 하지만 딥러닝 알고리즘은 다수의 학습 데이터가 있어야 한다. 특히 영상 내 균열의 위치를 표시한 라벨 영상은 필수적이다. 이러한 라벨 영상을 다수 확보하기 위해서는 많은 노동력과 시간이 필요한 실정이다. 이러한 비용을 절감하고 탐지 정확도를 높이기 위해서 본 연구에서는 mean teacher 방식의 학습 구조를 제안하였다. 이 학습 구조는 900장의 라벨 영상 데이터 세트와 3000장의 비라벨 영상 데이터 세트로 훈련되었다. 학습된 균열 탐지 신경망 모델은 300여장의 실험용 데이터 세트를 통해 평가되었고 탐지 정확도는 89.23%의 mean intersection over union과 89.12%의 F1 score를 기록하였다. 이 설험을 통해 지도학습과 비교하여 탐지 성능이 향상된 것을 확인하였다. 향후에 이러한 방법은 라벨 영상을 확보하는데 필요한 비용을 절감하는데 활용될 것으로 기대한다.
최근 들어 개인, 기업, 국가 등 사회 전반에 랜섬웨어에 의한 피해가 급증하고 있으며 그 규모도 점차 커지고 있다. 랜섬웨어는 사용자 컴퓨터 시스템에 침입하여 사용자의 중요 파일들을 암호화하여 사용자가 해당 파일들을 사용하지 못하게 하고 그 댓가로 금품을 요구하는 악의적인 소프트웨어이다. 랜섬웨어는 기타 다른 악의적인 코드들에 비해 공격기법이 다양하고 정교하여 탐지가 어렵고 피해 규모가 크기 때문에 정확한 탐지와 해결 방법이 필요하다. 정확한 랜섬웨어를 탐지하기 위해서는 랜섬웨어의 특성들로 학습한 탐지 시스템의 추론엔진이 요구된다. 따라서 본 논문에서는 랜섬웨어의 정확한 탐지를 위해 랜섬웨어가 가지는 특성을 추출하여 분류하는 모델을 제안하고 추출된 특성들의 유사성을 계산하여 특성의 차원을 축소한 다음 축소된 특성들을 그룹화하여 랜섬웨어의 특성으로 공격 도구, 유입경로, 설치파일, command and control, 실행파일, 획득권한, 우회기법, 수집정보, 유출기법, 목표 시스템의 상태 변경으로 분류하였다. 분류된 특성을 기존 랜섬웨어에 적용하여 분류의 타당성을 증명하였고, 차후에 이 분류기법을 이용해 학습한 추론엔진을 탐지시스템에 장착하면 새롭게 등장하는 신종과 변종 랜섬웨어도 대부분 탐지할 수 있다.
The extensive utilization of concrete has given rise to environmental concerns, specifically concerning the depletion of river sand. To address this issue, waste deposits can provide manufactured-sand (MS) as a substitute for river sand. The objective of this study is to explore the application of machine learning techniques to facilitate the production of manufactured-sand concrete (MSC) containing stone nano-powder through estimating the splitting tensile strength (STS) containing compressive strength of cement (CSC), tensile strength of cement (TSC), curing age (CA), maximum size of the crushed stone (Dmax), stone nano-powder content (SNC), fineness modulus of sand (FMS), water to cement ratio (W/C), sand ratio (SR), and slump (S). To achieve this goal, a total of 310 data points, encompassing nine influential factors affecting the mechanical properties of MSC, are collected through laboratory tests. Subsequently, the gathered dataset is divided into two subsets, one for training and the other for testing; comprising 90% (280 samples) and 10% (30 samples) of the total data, respectively. By employing the generated dataset, novel models were developed for evaluating the STS of MSC in relation to the nine input features. The analysis results revealed significant correlations between the CSC and the curing age CA with STS. Moreover, when delving into sensitivity analysis using an empirical model, it becomes apparent that parameters such as the FMS and the W/C exert minimal influence on the STS. We employed various loss functions to gauge the effectiveness and precision of our methodologies. Impressively, the outcomes of our devised models exhibited commendable accuracy and reliability, with all models displaying an R-squared value surpassing 0.75 and loss function values approaching insignificance. To further refine the estimation of STS for engineering endeavors, we also developed a user-friendly graphical interface for our machine learning models. These proposed models present a practical alternative to laborious, expensive, and complex laboratory techniques, thereby simplifying the production of mortar specimens.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.