• Title/Summary/Keyword: Computer Model

Search Result 14,804, Processing Time 0.051 seconds

Anomaly detection and attack type classification mechanism using Extra Tree and ANN (Extra Tree와 ANN을 활용한 이상 탐지 및 공격 유형 분류 메커니즘)

  • Kim, Min-Gyu;Han, Myung-Mook
    • Journal of Internet Computing and Services
    • /
    • v.23 no.5
    • /
    • pp.79-85
    • /
    • 2022
  • Anomaly detection is a method to detect and block abnormal data flows in general users' data sets. The previously known method is a method of detecting and defending an attack based on a signature using the signature of an already known attack. This has the advantage of a low false positive rate, but the problem is that it is very vulnerable to a zero-day vulnerability attack or a modified attack. However, in the case of anomaly detection, there is a disadvantage that the false positive rate is high, but it has the advantage of being able to identify, detect, and block zero-day vulnerability attacks or modified attacks, so related studies are being actively conducted. In this study, we want to deal with these anomaly detection mechanisms, and we propose a new mechanism that performs both anomaly detection and classification while supplementing the high false positive rate mentioned above. In this study, the experiment was conducted with five configurations considering the characteristics of various algorithms. As a result, the model showing the best accuracy was proposed as the result of this study. After detecting an attack by applying the Extra Tree and Three-layer ANN at the same time, the attack type is classified using the Extra Tree for the classified attack data. In this study, verification was performed on the NSL-KDD data set, and the accuracy was 99.8%, 99.1%, 98.9%, 98.7%, and 97.9% for Normal, Dos, Probe, U2R, and R2L, respectively. This configuration showed superior performance compared to other models.

Deep Learning Based Group Synchronization for Networked Immersive Interactions (네트워크 환경에서의 몰입형 상호작용을 위한 딥러닝 기반 그룹 동기화 기법)

  • Lee, Joong-Jae
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.10
    • /
    • pp.373-380
    • /
    • 2022
  • This paper presents a deep learning based group synchronization that supports networked immersive interactions between remote users. The goal of group synchronization is to enable all participants to synchronously interact with others for increasing user presence Most previous methods focus on NTP-based clock synchronization to enhance time accuracy. Moving average filters are used to control media playout time on the synchronization server. As an example, the exponentially weighted moving average(EWMA) would be able to track and estimate accurate playout time if the changes in input data are not significant. However it needs more time to be stable for any given change over time due to codec and system loads or fluctuations in network status. To tackle this problem, this work proposes the Deep Group Synchronization(DeepGroupSync), a group synchronization based on deep learning that models important features from the data. This model consists of two Gated Recurrent Unit(GRU) layers and one fully-connected layer, which predicts an optimal playout time by utilizing the sequential playout delays. The experiments are conducted with an existing method that uses the EWMA and the proposed method that uses the DeepGroupSync. The results show that the proposed method are more robust against unpredictable or rapid network condition changes than the existing method.

A Study on the Cerber-Type Ransomware Detection Model Using Opcode and API Frequency and Correlation Coefficient (Opcode와 API의 빈도수와 상관계수를 활용한 Cerber형 랜섬웨어 탐지모델에 관한 연구)

  • Lee, Gye-Hyeok;Hwang, Min-Chae;Hyun, Dong-Yeop;Ku, Young-In;Yoo, Dong-Young
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.10
    • /
    • pp.363-372
    • /
    • 2022
  • Since the recent COVID-19 Pandemic, the ransomware fandom has intensified along with the expansion of remote work. Currently, anti-virus vaccine companies are trying to respond to ransomware, but traditional file signature-based static analysis can be neutralized in the face of diversification, obfuscation, variants, or the emergence of new ransomware. Various studies are being conducted for such ransomware detection, and detection studies using signature-based static analysis and behavior-based dynamic analysis can be seen as the main research type at present. In this paper, the frequency of ".text Section" Opcode and the Native API used in practice was extracted, and the association between feature information selected using K-means Clustering algorithm, Cosine Similarity, and Pearson correlation coefficient was analyzed. In addition, Through experiments to classify and detect worms among other malware types and Cerber-type ransomware, it was verified that the selected feature information was specialized in detecting specific ransomware (Cerber). As a result of combining the finally selected feature information through the above verification and applying it to machine learning and performing hyper parameter optimization, the detection rate was up to 93.3%.

A Design of the Vehicle Crisis Detection System(VCDS) based on vehicle internal and external data and deep learning (차량 내·외부 데이터 및 딥러닝 기반 차량 위기 감지 시스템 설계)

  • Son, Su-Rak;Jeong, Yi-Na
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.14 no.2
    • /
    • pp.128-133
    • /
    • 2021
  • Currently, autonomous vehicle markets are commercializing a third-level autonomous vehicle, but there is a possibility that an accident may occur even during fully autonomous driving due to stability issues. In fact, autonomous vehicles have recorded 81 accidents. This is because, unlike level 3, autonomous vehicles after level 4 have to judge and respond to emergency situations by themselves. Therefore, this paper proposes a vehicle crisis detection system(VCDS) that collects and stores information outside the vehicle through CNN, and uses the stored information and vehicle sensor data to output the crisis situation of the vehicle as a number between 0 and 1. The VCDS consists of two modules. The vehicle external situation collection module collects surrounding vehicle and pedestrian data using a CNN-based neural network model. The vehicle crisis situation determination module detects a crisis situation in the vehicle by using the output of the vehicle external situation collection module and the vehicle internal sensor data. As a result of the experiment, the average operation time of VESCM was 55ms, R-CNN was 74ms, and CNN was 101ms. In particular, R-CNN shows similar computation time to VESCM when the number of pedestrians is small, but it takes more computation time than VESCM as the number of pedestrians increases. On average, VESCM had 25.68% faster computation time than R-CNN and 45.54% faster than CNN, and the accuracy of all three models did not decrease below 80% and showed high accuracy.

Implementation of a Transition Rule Model for Automation of Tracking Exercise Progression (운동 과정 추적의 자동화를 위한 전이 규칙 모델의 구현)

  • Chung, Daniel;Ko, Ilju
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.5
    • /
    • pp.157-166
    • /
    • 2022
  • Exercise is necessary for a healthy life, but it is recommended that it be conducted in a non-face-to-face environment in the context of an epidemic such as COVID-19. However, in the existing non-face-to-face exercise content, it is possible to recognize exercise movements, but the process of interpreting and providing feedback information is not automated. Therefore, in this paper, to solve this problem, we propose a method of creating a formalized rule to track the contents of exercise and the motions that constitute it. To make such a rule, first make a rule for the overall exercise content, and then create a tracking rule for the motions that make up the exercise. A motion tracking rule can be created by dividing the motion into steps and defining a key frame pose that divides the steps, and creating a transition rule between states and states represented by the key frame poses. The rules created in this way are premised on the use of posture and motion recognition technology using motion capture equipment, and are used for logical development for automation of application of these technologies. By using the rules proposed in this paper, not only recognizing the motions appearing in the exercise process, but also automating the interpretation of the entire motion process, making it possible to produce more advanced contents such as an artificial intelligence training system. Accordingly, the quality of feedback on the exercise process can be improved.

The Perception and Needs Analysis of Early Childhood Teachers for Development of a Play-Based Artificial Intelligence Education Program for 5-Year-Olds (만 5세 대상 놀이중심 인공지능 교육 프로그램 개발을 위한 유아교사의 인식과 요구분석)

  • Park, Jieun;Hong, Misun;Cho, Jungwon
    • Journal of Industrial Convergence
    • /
    • v.20 no.5
    • /
    • pp.39-59
    • /
    • 2022
  • We analyze the perceptions and requirements of early childhood teachers for artificial intelligence(AI) education to develop an AI education program for 5-year-olds. As for the research methodology, we conducted a survey and an in-depth interview to extract the AI educational elements centering on the analysis stage, the first stage of the ADDIE model. The research result is that first, it is necessary to design a curriculum that combines the contents of early childhood education and AI education to be naturally accepted as AI education for 5-year-olds. Second, an evaluation tool for AI education that can showcase the teacher's reflection should be developed systematically. Third, it is necessary to support a play-centered AI education support and environment for early childhood teachers. Lastly, it is essential to establish a system that can be continuously operated in the field of early childhood education in consideration of AI education in the non-curricular curriculum. It is expected that in the future, a play-oriented AI education program for 5-year-olds will be developed to spread awareness of AI education for infants and present an AI education approach for each age and stage of learners.

CycleGAN Based Translation Method between Asphalt and Concrete Crack Images for Data Augmentation (데이터 증강을 위한 순환 생성적 적대 신경망 기반의 아스팔트와 콘크리트 균열 영상 간의 변환 기법)

  • Shim, Seungbo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.5
    • /
    • pp.171-182
    • /
    • 2022
  • The safe use of a structure requires it to be maintained in an undamaged state. Thus, a typical factor that determines the safety of a structure is a crack in it. In addition, cracks are caused by various reasons, damage the structure in various ways, and exist in different shapes. Making matters worse, if these cracks are unattended, the risk of structural failure increases and proceeds to a catastrophe. Hence, recently, methods of checking structural damage using deep learning and computer vision technology have been introduced. These methods usually have the premise that there should be a large amount of training image data. However, the amount of training image data is always insufficient. Particularly, this insufficiency negatively affects the performance of deep learning crack detection algorithms. Hence, in this study, a method of augmenting crack image data based on the image translation technique was developed. In particular, this method obtained the crack image data for training a deep learning neural network model by transforming a specific case of a asphalt crack image into a concrete crack image or vice versa . Eventually, this method expected that a robust crack detection algorithm could be developed by increasing the diversity of its training data.

A study on the selection of the target scope for destruction of personal credit information of customers whose financial transaction effect has ended (금융거래 효과가 종료된 고객의 개인신용정보 파기 대상 범위 선정에 관한 연구)

  • Baek, Song-Yi;Lim, Young-Bin;Lee, Chang-Gil;Chun, Sam-Hyun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.3
    • /
    • pp.163-169
    • /
    • 2022
  • According to the Credit Information Act, in order to protect customer information by relationship of credit information subjects, it is destroyed and stored separately in two stages according to the period after the financial transaction effect is over. However, there is a limitation in that the destruction of personal credit information of customers whose financial transaction effect has expired cannot be collectively destroyed when the transaction has been terminated, depending on the nature of the financial product and transaction. To this end, the IT person in charge is developing a computerized program according to the target and order of destruction by investigating the business relationship by transaction type in advance. In this process, if the identification of the upper relation between tables is unclear, a compliance issue arises in which personal credit information cannot be destroyed or even information that should not be destroyed because it depends on the subjective judgment of the IT person in charge. Therefore, in this paper, we propose a model and algorithm for identifying the referenced table based on SQL executed in the computer program, analyzing the upper relation between tables with the primary key information of the table, and visualizing and objectively selecting the range to be destroyed. presented and implemented.

Developing a New Algorithm for Conversational Agent to Detect Recognition Error and Neologism Meaning: Utilizing Korean Syllable-based Word Similarity (대화형 에이전트 인식오류 및 신조어 탐지를 위한 알고리즘 개발: 한글 음절 분리 기반의 단어 유사도 활용)

  • Jung-Won Lee;Il Im
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.3
    • /
    • pp.267-286
    • /
    • 2023
  • The conversational agents such as AI speakers utilize voice conversation for human-computer interaction. Voice recognition errors often occur in conversational situations. Recognition errors in user utterance records can be categorized into two types. The first type is misrecognition errors, where the agent fails to recognize the user's speech entirely. The second type is misinterpretation errors, where the user's speech is recognized and services are provided, but the interpretation differs from the user's intention. Among these, misinterpretation errors require separate error detection as they are recorded as successful service interactions. In this study, various text separation methods were applied to detect misinterpretation. For each of these text separation methods, the similarity of consecutive speech pairs using word embedding and document embedding techniques, which convert words and documents into vectors. This approach goes beyond simple word-based similarity calculation to explore a new method for detecting misinterpretation errors. The research method involved utilizing real user utterance records to train and develop a detection model by applying patterns of misinterpretation error causes. The results revealed that the most significant analysis result was obtained through initial consonant extraction for detecting misinterpretation errors caused by the use of unregistered neologisms. Through comparison with other separation methods, different error types could be observed. This study has two main implications. First, for misinterpretation errors that are difficult to detect due to lack of recognition, the study proposed diverse text separation methods and found a novel method that improved performance remarkably. Second, if this is applied to conversational agents or voice recognition services requiring neologism detection, patterns of errors occurring from the voice recognition stage can be specified. The study proposed and verified that even if not categorized as errors, services can be provided according to user-desired results.

A Methodology for Making Military Surveillance System to be Intelligent Applied by AI Model (AI모델을 적용한 군 경계체계 지능화 방안)

  • Changhee Han;Halim Ku;Pokki Park
    • Journal of Internet Computing and Services
    • /
    • v.24 no.4
    • /
    • pp.57-64
    • /
    • 2023
  • The ROK military faces a significant challenge in its vigilance mission due to demographic problems, particularly the current aging population and population cliff. This study demonstrates the crucial role of the 4th industrial revolution and its core artificial intelligence algorithm in maximizing work efficiency within the Command&Control room by mechanizing simple tasks. To achieve a fully developed military surveillance system, we have chosen multi-object tracking (MOT) technology as an essential artificial intelligence component, aligning with our goal of an intelligent and automated surveillance system. Additionally, we have prioritized data visualization and user interface to ensure system accessibility and efficiency. These complementary elements come together to form a cohesive software application. The CCTV video data for this study was collected from the CCTV cameras installed at the 1st and 2nd main gates of the 00 unit, with the cooperation by Command&Control room. Experimental results indicate that an intelligent and automated surveillance system enables the delivery of more information to the operators in the room. However, it is important to acknowledge the limitations of the developed software system in this study. By highlighting these limitations, we can present the future direction for the development of military surveillance systems.