International journal of advanced smart convergence
/
v.12
no.3
/
pp.104-108
/
2023
This paper deals with research on innovative systems using Python-based artificial intelligence technology in the field of plant growth monitoring. The importance of monitoring and analyzing the health status and growth environment of plants in real time contributes to improving the efficiency and quality of crop production. This paper proposes a method of processing and analyzing plant image data using computer vision and deep learning technologies. The system was implemented using Python language and the main deep learning framework, TensorFlow, PyTorch. A camera system that monitors plants in real time acquires image data and provides it as input to a deep neural network model. This model was used to determine the growth state of plants, the presence of pests, and nutritional status. The proposed system provides users with information on plant state changes in real time by providing monitoring results in the form of visual or notification. In addition, it is also used to predict future growth conditions or anomalies by building data analysis and prediction models based on the collected data. This paper is about the design and implementation of Python-based plant growth monitoring systems, data processing and analysis methods, and is expected to contribute to important research areas for improving plant production efficiency and reducing resource consumption.
Proceedings of the Korea Information Processing Society Conference
/
2011.11a
/
pp.306-309
/
2011
컴퓨터의 발전과 함께 음악 프로그램을 이용한 작곡 작업은 전문가부터 일반인에게 이르기까지 사용자의 폭을 넓혀왔다. 본 연구에서는 이러한 작곡 작업을 보다 효과적으로 하기 위하여 다양한 방안을 모색하였다. 단순한 텍스트 기반의 음악 검색이 아닌 미디(Midi) 분석엔진 기반의 다양한 검색방법을 설계하였으며 이를 기반으로 통합 음악제작/검색 솔루션을 구현하였다. 또한, 휴대성(Portability)을 위하여 MS 사의 WindowsPhone7 플랫폼 기반의 어플리케이션 구현을 통해 PC기반의 프로그램을 모바일 환경에서 작동 및 사용할 수 있도록 구현하였다.
NGUYEN, Thanh Luan;NGUYEN, Van Phuoc;DANG, Thi Viet Duc
The Journal of Asian Finance, Economics and Business
/
v.9
no.5
/
pp.225-237
/
2022
The term "artificial intelligence" is considered a component of sophisticated technological developments, and several intelligent tools have been developed to assist organizations and entrepreneurs in making business decisions. Artificial intelligence (AI) is defined as the concept of transforming inanimate objects into intelligent beings that can reason in the same way that humans do. Computer systems can imitate a variety of human intelligence activities, including learning, reasoning, problem-solving, speech recognition, and planning. This study's objective is to provide responses to the questions: Which factors should be taken into account while deciding whether or not to use AI applications? What role do these elements have in AI application adoption? However, this study proposes a framework to explore the significance and relation of success factors to AI adoption based on the technology-organization-environment model. Ten critical factors related to AI adoption are identified. The framework is empirically tested with data collected by mail surveying organizations in Vietnam. Structural Equation Modeling is applied to analyze the data. The results indicate that Technical compatibility, Relative advantage, Technical complexity, Technical capability, Managerial capability, Organizational readiness, Government involvement, Market uncertainty, and Vendor partnership are significantly related to AI applications adoption.
Proceedings of the Korea Information Processing Society Conference
/
2023.11a
/
pp.461-464
/
2023
최근 GPT-3 와 LLaMa 같은 생성형 거대 언어모델을 활용한 서비스가 공개되었고, 실제로 많은 사람들이 사용하고 있다. 해당 모델들은 사용자들의 다양한 질문에 대해 유창한 답변을 한다는 이유로 주목받고 있다. 하지만 LLMs 의 답변에는 종종 Inconsistent content 와 non-factual statement 가 존재하며, 이는 사용자들로 하여금 잘못된 정보의 전파 등의 문제를 야기할 수 있다. 이에 논문에서는 동일한 질문에 대한 LLM 의 답변 샘플과 외부 지식을 활용한 Hallucination Detection 방법을 제안한다. 제안한 방법은 동일한 질문에 대한 LLM 의 답변들을 이용해 일관성 점수(Consistency score)를 계산한다. 거기에 외부 지식을 이용한 사실검증을 통해 사실성 점수(Factuality score)를 계산한다. 계산된 일관성 점수와 사실성 점수를 활용하여 문장 수준의 Hallucination Detection 을 가능하게 했다. 실험에는 GPT-3 를 이용하여 WikiBio dataset 에 있는 인물에 대한 passage 를 생성한 데이터셋을 사용하였으며, 우리는 해당 방법을 통해 문장 수준에서의 Hallucination Detection 성능이 baseline 보다 AUC-PR scores 에서 향상됨을 보였다.
Deep learning-based anomaly detection technology is used in various fields such as computer vision, speech recognition, and natural language processing. In particular, this technology is applied in various fields such as monitoring manufacturing equipment abnormalities, detecting financial fraud, detecting network hacking, and detecting anomalies in medical images. However, in the field of construction and architecture, research on deep learning-based data anomaly detection technology is difficult due to the lack of digitization of domain knowledge due to late digital conversion, lack of learning data, and difficulties in collecting and processing field data in real time. This study acquires necessary data through IoT (Internet of Things) from the viewpoint of monitoring for environmental management of architectural spaces, converts them into a database, learns deep learning, and then supports anomaly patterns using AI (Artificial Infelligence) deep learning-based anomaly detection. We propose an implementation process. The results of this study suggest an effective environmental anomaly pattern detection solution architecture for environmental management of architectural spaces, proving its feasibility. The proposed method enables quick response through real-time data processing and analysis collected from IoT. In order to confirm the effectiveness of the proposed method, performance analysis is performed through prototype implementation to derive the results.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.24
no.2
/
pp.87-92
/
2024
In this paper, a RAG system was implemented using an existing Large Language Model (LLM) and Langchain library to develop a dental consultation chatbot. For this purpose, we collected contents from the webpage bulletin boards of domestic dental university hospitals and constructed consultation data with the advice and supervision of dental specialists. In order to divide the input consultation data into appropriate sizes, the chunk size and the size of the overlapping text in each chunk were set to 1001 and 100, respectively. As a result of the simulation, the Retrieval Augmented LLM searched for and output the consultation content that was most similar to the user input. It was confirmed that the accessibility of dental consultation and the accuracy of consultation content could be improved through the built chatbot.
One challenge with teaching practical programming classes is the standardization of development tools on student computers. This is particularly true when a complicated setup process is required before beginning to code, or in remote classes, such as those necessitated by the COVID-19 pandemic, where the instructor cannot provide individual troubleshooting assistance. In such cases, students who encounter problems during the setup process may give up on the class altogether before even beginning to code. Therefore, this paper recommends using GitHub Codespaces as a tool for implementing standardized student development environments from day one. Codespaces provides Docker containers that an instructor can configure in such a way as to enable students to practice installing various coding tools within a controlled space, while also providing a language-specific, fully optimized development environment. In addition, Codespaces may be used more effectively in collaboration with GitHub Classroom, which helps instructors manage both the starter code and coding environment in which students work. In this paper, we compare two semesters of university Node.JS programming classes that utilized different development environments: one localized on student computers, the other containerized in Codespaces online. Then, we discuss how GitHub Codespaces and GitHub Classroom can be used to increase the effectiveness of practical programming classes while also increasing student engagement and programming confidence in class.
Integrated pest management is essential for controlling plant diseases that reduce crop yields. Rapid diagnosis is crucial for effective management in the event of an outbreak to identify the cause and minimize damage. Diagnosis methods range from indirect visual observation, which can be subjective and inaccurate, to machine learning and deep learning predictions that may suffer from biased data. Direct molecular-based methods, while accurate, are complex and time-consuming. However, the development of large multimodal models, like GPT-4, combines image recognition with natural language processing for more accurate diagnostic information. This study introduces GPT-4-based system for diagnosing plant diseases utilizing a detailed knowledge base with 1,420 host plants, 2,462 pathogens, and 37,467 pesticide instances from the official plant disease and pesticide registries of Korea. The AI plant doctor offers interactive advice on diagnosis, control methods, and pesticide use for diseases in Korea and is accessible at https://pdoc.scnu.ac.kr/.
Yasir Hadi Farhan;Mohanaad Shakir;Mustafa Abd Tareq;Boumedyen Shannaq
Journal of Information Science Theory and Practice
/
v.12
no.3
/
pp.36-48
/
2024
The information retrieval (IR) process often encounters a challenge known as query-document vocabulary mismatch, where user queries do not align with document content, impacting search effectiveness. Automatic query expansion (AQE) techniques aim to mitigate this issue by augmenting user queries with related terms or synonyms. Word embedding, particularly Word2Vec, has gained prominence for AQE due to its ability to represent words as real-number vectors. However, AQE methods typically expand individual query terms, potentially leading to query drift if not carefully selected. To address this, researchers propose utilizing median vectors derived from deep median networks to capture query similarity comprehensively. Integrating median vectors into candidate term generation and combining them with the BM25 probabilistic model and two IR strategies (EQE1 and V2Q) yields promising results, outperforming baseline methods in experimental settings.
This Study focuses on the university students' job attitude and cost of employment preparation. Nowadays, many university and college students spend a big money improving their employment preparation such as studying on foreign language, getting various kinds of certificates and tooth correction, clothing etc. for employment interview. This study investigated the cost of employment preparation and Job attitude of the 484 students of universities and colleges, the analysis of the collected data was conducted with SPSS 12.0 program by using frequency analysis, factor analysis, reliability assessment, correlation test, t-test, one way ANOVA. The university students paid more costs of employment preparation such as a language training abroad, a private training, and clothing than the college students. Also, Allied social science students paid more costs of the language training abroad, and clothing than allied computer science and allied design students. The female students paid more money than male students for tooth correction. The costs of language training abroad, private training and clothing are affected the students' socioeconomic background of a home. Regarding the job attitude of students, the university students are feeling more positive than the college students of the employment efficacy and cognition of the education environment. As result, the differences in the cost of employment preparation by the university type, faculty major course, their sex, and socioeconomic background of a home. The student's employment-efficacy and cognition of the education environment are also differences between the university and the college students. So, to improve the job attitude, developing their ability for employment preparation, educational programs should be arranged in school and continuous researches are needed.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.