• Title/Summary/Keyword: Computer Input Device

Search Result 314, Processing Time 0.022 seconds

Wearable User Interface based on EOG and Marker Recognition (EOG와 마커인식을 이용한 착용형 사용자 인터페이스)

  • Kang, Sun-Kyoung;Jung, Sung-Tae;Lee, Sang-Seol
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.6 s.44
    • /
    • pp.133-141
    • /
    • 2006
  • Recently many wearable computers have been developed. But they still have many user interface problems from both an input and output perspective. This paper presents a wearable user interface based on EOG(electrooculogram) sensing circuit and marker recognition. In the proposed user interface, the EOG sensor circuit which tracks the movement of eyes by sensing the potential difference across the eye is used as a pointing device. Objects to manipulate are represented human readable markers. And the marker recognition system detects and recognize markers from the camera input image. When a marker is recognized, the corresponding property window and method window are displayed to the head mounted display. Users manipulate the object by selecting a property or a method item from the window. By using the EOG sensor circuit and the marker recognition system, we can manipulate an object with only eye movement in the wearable computing environment.

  • PDF

A Study on the Windows Application Control Model Based on Leap Motion (립모션 기반의 윈도우즈 애플리케이션 제어 모델에 관한 연구)

  • Kim, Won
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.11
    • /
    • pp.111-116
    • /
    • 2019
  • With recent rapid development of computer capabilities, various technologies that can facilitate the interaction between humans and computers are being studied. The paradigm tends to change to NUI using the body such as 3D motion, haptics, and multi-touch with GUI using traditional input devices. Various studies have been conducted on transferring human movements to computers using sensors. In addition to the development of optical sensors that can acquire 3D objects, the range of applications in the industrial, medical, and user interface fields has been expanded. In this paper, I provide a model that can execute other programs through gestures instead of the mouse, which is the default input device, and control Windows based on the lip motion. To propose a model which converges with an Android application and can be controlled by various media and voice instruction functions using voice recognition and buttons through connection with a main client. It is expected that Internet media such as video and music can be controlled not only by a client computer but also by an application at a long distance and that convenient media viewing can be performed through the proposal model.

A Study on Fabrication and Performance Evaluation of Ti:LiNbO3 Polarization Mode Controllers (Ti:LiNbO3 편광모드 조절기 제작 및 성능 평가에 관한 연구)

  • Moon, Je-Young;Jung, Hong-Sik
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.6
    • /
    • pp.547-554
    • /
    • 2004
  • We investigated a LiNbO$_3$ based integrated-optic polarization controller with the Ti-indiffused waveguide along the z-axis utilizing the electro-optic effect. The device consists of a first quarter-wave (λ / 4) followed by a half-wave (λ / 2) and a second quarter-wave (λ / 4) wave-plate. We analyzed the amount of phase change and the transformation of the polarized mode as a function of the combination of wave-plates and of their applied voltages. The operation has been systematically measured utilizing a polarimeter and Poincare sphere. We confirmed that the fabricated device controls the transformations from any arbitrary input state of polarization (SOP) into any general output SOP.

Mobile Proxy Architecture and Its Practice: Mobile Multimedia Collaboration System (모바일 기기를 위한 프록시 구조와 모바일 멀티미디어 협업 시스템 적용예)

  • Oh, Sang-Yoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.7
    • /
    • pp.123-132
    • /
    • 2009
  • The perforrnance and portability of mobile applications can be greatly increased by adopting proxy modiles which exists between the conventional system and the device. When mobile devices collaborate with the conventional computers, there are problems to address: a battery life problem, limited input and output methods, and intermittent wireless connection. Those issues are magnified in the multimedia collaboration environment since it works in a real-time condition and the size of the message in the system is big in many cases. Additionally, because multimedia collaboration system softwares are too heavy and complex for mobile devices, it is veη hard to integrate them with conventional systems. In this paper, we describe our design and its implementation of a novel approach to map events (i.e. messages) using a proxy for mobile applications. We adopt a proxy to provide a content adaptation (i.e. transcoding) where the message contents are customized. Also, we design a mobile version publish/subscribe system to provide communication service for mobile device in loosely coupled and flexible manner. We present our empirical results which show that our design can be efficiently implemented and integrated with a conventional multimedia collaboration system.

Optical Music Score Recognition System for Smart Mobile Devices

  • Han, SeJin;Lee, GueeSang
    • International Journal of Contents
    • /
    • v.10 no.4
    • /
    • pp.63-68
    • /
    • 2014
  • In this paper, we propose a smart system that can optically recognize a music score within a document and can play the music after recognition. Many historic handwritten documents have now been digitalized. Converting images of a music score within documents into digital files is particularly difficult and requires considerable resources because a music score consists of a 2D structure with both staff lines and symbols. The proposed system takes an input image using a mobile device equipped with a camera module, and the image is optimized via preprocessing. Binarization, music sheet correction, staff line recognition, vertical line detection, note recognition, and symbol recognition processing are then applied, and a music file is generated in an XML format. The Music XML file is recorded as digital information, and based on that file, we can modify the result, logically correct errors, and finally generate a MIDI file. Our system reduces misrecognition, and a wider range of music score can be recognized because we have implemented distortion correction and vertical line detection. We show that the proposed method is practical, and that is has potential for wide application through an experiment with a variety of music scores.

Development of globe-type radio mouse using gyro sensor (자이로센서를 이용한 장갑형 무선마우스 개발)

  • Kim, Nam-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.8
    • /
    • pp.1721-1728
    • /
    • 2009
  • Future computer interface was interchanged with person's hands or eyes from traditional mouse. In this research, I developed glove type radio mouse using gyro sensor that is replaced mouse cursor movement with persons's hand movement. Introducing a mobile sensor network technology based on bluetooth, radio mouse connected to computer system wirelessly for overcoming wire mouse's activity restrictions. Also, using USB port interface made be easy to install and to use. Developed glove type radio mouse was confirmed in the possibility of using as well as an input pointing device for presentations or games that needed many kinds of user interaction.

A Effective Method for Feature Detection and Enhancement in Fingerprint Images (지문의 특징 검출 및 향상을 위한 전처리 기법 연구)

  • Yang, Ryong;No, Jung-Seok;Lee, Sang-Bum
    • Journal of the Korea Computer Industry Society
    • /
    • v.3 no.12
    • /
    • pp.1775-1784
    • /
    • 2002
  • Fingerprint recognition technology is used in many biometrics field accordingly essential feature of fingerprint image and the study is progressing. However development is not perfect in performance of the fingerprint recognition and application of the usual life. In the paper, we study various necessity of preprocessing according to algorithm and circumstances of authentication system in automatic information machine. We prove that system circumstance and optation of fingerprints image effectively is the important factor by using optical fingerprint input device and scanning the fingerprint in ID card. And then we present correct and fast computation method for improving image and feature extraction of fingerprint. Also we study effective algorithm implementation of total system.

  • PDF

A Film-type Vibrotactile Actuator for Hand-held Devices (휴대용 장치를 위한 필름형 촉감 액추에이터)

  • Kim, Sang-Youn;Kim, Ki-Baek;Kim, Jaehwan;Park, Won-Hyeong;Kyung, Ki-Uk
    • The Journal of Korea Robotics Society
    • /
    • v.8 no.3
    • /
    • pp.150-155
    • /
    • 2013
  • Vibrotactile actuators for small consumer electronic products, such as mobile devices, have been widely used for conveying haptic sensation to users. One of the most important things in vibrotactile actuators is to be developed in the form of thin actuator which can be easily embedded into mobile devices and to provide vibrotactile signals with wide frequency band to users. Thus, this paper proposes a thin film type haptic actuator with an aim to convey vibrotactile information with high frequency bandwidth to users in mobile devices. To this end, a vibrotactile actuator which creates haptic sensation is designed and constructed based on cellulose acetate material. A cellulose acetate material charged with an electric potential can generate vibration under the AC voltage input. It is found that the motion of the actuator can have concave or convex shape by controlling a polarity of both charged membranes and the actuator performance can be modulated by increasing level of biased electric potential. The experiment clearly shows that the proposed actuator creates enough output force to stimulate human skin with a large frequency bandwidth and to simulate various vibrotactile sensations to users.

Frequency Response Estimation of 1.3 ㎛ Waveguide Integrated Vertical PIN Type Ge-on-Si Photodetector Based on the Analysis of Fringing Field in Intrinsic Region

  • Seo, Dongjun;Kwon, Won-Bae;Kim, Sung Chang;Park, Chang-Soo
    • Current Optics and Photonics
    • /
    • v.3 no.6
    • /
    • pp.510-515
    • /
    • 2019
  • In this paper, we introduce a 1.3-㎛ 25-GHz waveguide-integrated vertical PIN type Ge-on-Si photodetector fabricated using a multi-project wafers service based on fringing field analysis in the depletion region. In general, 1.3-㎛ photodetectors fabricated using a commercial foundry service can achieve limited bandwidths because a significant amount of photo-generated carriers are located within a few microns from the input along the device length, and they are influenced by the fringing field, leading to a longer transit time. To estimate the response time, we calculate the fringing field in that region and the transit time using the drift velocity caused by the field. Finally, we compare the estimated value with the measured one. The photodetector fabricated has a bandwidth of 20.75 GHz at -1 V with an estimation error of <3 GHz and dark current and responsivity of 110 nA and 0.704 A/W, respectively.

QFN Solder Defect Detection Using Convolutional Neural Networks with Color Input Images (컬러 입력 영상을 갖는 Convolutional Neural Networks를 이용한 QFN 납땜 불량 검출)

  • Kim, Ho-Joong;Cho, Tai-Hoon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.15 no.3
    • /
    • pp.18-23
    • /
    • 2016
  • QFN (Quad Flat No-leads Package) is one of the SMD (Surface Mount Device). Since there is no lead in QFN, there are many defects on solder. Therefore, we propose an efficient mechanism for QFN solder defect detection at this paper. For this, we employ Convolutional Neural Network (CNN) of the Machine Learning algorithm. QFN solder's color multi-layer images are used to train CNN. Since these images are 3-channel color images, they have a problem with applying to CNN. To solve this problem, we used each 1-channel grayscale image (Red, Green, Blue) that was separated from 3-channel color images. We were able to detect QFN solder defects by using this CNN. In this paper, it is shown that the CNN is superior to the conventional multi-layer neural networks in detecting QFN solder defects. Later, further research is needed to detect other QFN.