• Title/Summary/Keyword: Computer Fluid Dynamics

Search Result 191, Processing Time 0.026 seconds

A Study on the 3-Dimensional Implementation of Computer-Aid Management of Stereo Images (입체 화상의 3차원 전산모사기 구현에 관한 연구)

  • Lee, Joong;Yoon, Do-Young
    • Korean Chemical Engineering Research
    • /
    • v.47 no.2
    • /
    • pp.179-184
    • /
    • 2009
  • Recent evolution of computer technology enhances the effectiveness of CFD(Computational Fluid Dynamics) analysis for the 3-dimensional complex transport phenomena including turbulent flows. Cheaper and easier than laser and ultra-sonic methods, the windows simulator name by CAMSI(Computer-Aided Management of Stereo Images) has been developed in order to implement the 3-dimensional image using a disparity histogram extracted from left and right stereo images. In our program using the area-based method, the matching pixel finding methods consist of SSD(Sum of Squared Distance), SAD(Sum of Absolute Distance), NCC(Normalized Correlation Coefficient) and MPC(Matching Pixel Count). On performing the program, stereo images on different window sizes for various matching pixel finding methods are compared reasonably. When the image has a small noise, SSD on small window size is more effective. Whereas there is much noise, NCC or MPC is more effective than SSD. CAMSI from the present study will be much helpful to implement the complex objects and to analyze 3-dimensional CFD around them.

A Study on integrated water management system based on Web maps

  • Choi, Ho Sung;Jung, Jin Young;Park, Koo Rack
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.8
    • /
    • pp.57-64
    • /
    • 2016
  • Initial prevention activities and rapid propagation conditions is the most important to prevent diffusion of water pollution. If water pollutants flow into streams river or main stresm located in environmental conservation area or water intake facilities, we must predict immediately arrival time and the diffusion concentration to the proactive. National Institute of Environmental Research developed water pollution incident response prediction system linking dam and movable weir. the system is mathematical model which is updated daily. Therefore it can quickly predict the arrival time and the diffusion concentration when there are accident of oil spills and hazardous chemicals. Also we equipped with mathematical model and toxicity model of EFDC(Environmental Fluid Dynamics Code) to calculate the arrival time and the diffusion concentration. However these systems offer the services of an offline manner than real-time control services. we have ensured the reliability of data collection and have developed a real-time water quality measurement data transmission device by using the data linkage utilizing a mode bus communication and a commercial SCADA system, in particular, we implemented to be able to do real-time water quality prediction through information infrastructure of the water quality integrated management business created by utilizing the construction of the real-time prediction system that utilizes the data collected, the Open map, the visual representation using charts API and development of integrated management system development based on web maps.

Motion of Stone Skipping Simulation by Physically-based Analysis (물리기반 해석을 통한 물수제비 운동 시뮬레이션)

  • Do, Joo-Young;Ra, Eun-Chul;Kim, Eun-Ju;Ryu, Kwan-Woo
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.33 no.3
    • /
    • pp.147-156
    • /
    • 2006
  • Physically-based simulation modeling is to simulate the real world by using physical laws such as Newton's second law of motion, while other modelings use only geometric Properties. In this paper, we present a real time simulation of stone skipping by using the physically-based modeling. We also describe interaction of a stone on the surface of water, and focus on calculating the path of the stone and the natural phenomena of water The path is decided by velocity of the stone and drag force from the water The motion is recalculated until the stone is immersing into the water surface. Our simulation provides a natural motion of stone skippings in real time. And the motion of stone skippings are generated by give interactive displays on the PC platforms. The techniques presented can easily be extended to simulate other interactive dynamics systems.

An FSI Simulation of the Metal Panel Deflection in a Shock Tube Using Illinois Rocstar Simulation Suite (일리노이 록스타 해석환경을 활용한 충격파관 내 금속패널 변형의 유체·구조 연성 해석)

  • Shin, Jung Hun;Sa, Jeong Hwan;Kim, Han Gi;Cho, Keum Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.5
    • /
    • pp.361-366
    • /
    • 2017
  • As the recent development of computing architecture and application software technology, real world simulation, which is the ultimate destination of computer simulation, is emerging as a practical issue in several research sectors. In this paper, metal plate motion in a square shock tube for small time interval was calculated using a supercomputing-based fluid-structure-combustion multi-physics simulation tool called Illinois Rocstar, developed in a US national R amp; D program at the University of Illinois. Afterwards, the simulation results were compared with those from experiments. The coupled solvers for unsteady compressible fluid dynamics and for structural analysis were based on the finite volume structured grid system and the large deformation linear elastic model, respectively. In addition, a strong correlation between calculation and experiment was shown, probably because of the predictor-corrector time-integration scheme framework. In the future, additional validation studies and code improvements for higher accuracy will be conducted to obtain a reliable open-source software research tool.

Nonlinear Dynamical Behavior of Beam-Plasma in the Pierce Diode (Pierce 다이오드에서 플라즈마의 비선형 동력학적 거동)

  • Koh, Wook-Hee;Park, In-Ho
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.5
    • /
    • pp.249-257
    • /
    • 2012
  • Nonlinear dynamical behaviors of plasma in the Pierce diode are investigated by a numerical code developed using a one dimensional fluid model. The plasma in Pierce diode is alternately stable and unstable as Pierce parameter is changed. The dynamical characteristics of neutral and non-neutral Pierce system is examined analytically and numerically. It alternately has growing and oscillatory mode as Pierce parameter varies. As Pierce parameter is decreased, each oscillatory mode undergoes a sequence of subharmonic period-doubling bifurcation and then culminate in a chaotic strange attractor. The analysis for this nonlinear behavior can be used as a model for understanding of beam-plasma interaction in more complex geometries and a data for chaos control.

Numerical simulation of VOC decomposition in an arc plasma reactor (수치해석 기법을 이용한 아크 플라즈마 반응기의 VOCs 분해성능 평가연구)

  • Park, Mi-jeong;Jo, Young-min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.8
    • /
    • pp.1-7
    • /
    • 2016
  • A range of techniques have been being developed to remove the volatile organic compounds from paining processes. High temperature decomposition of harmful VOCs using arc plasma has recently been proposed, and this work analyzed the extreme hot process by computer-aided fluid dynamics prior to the reactor design. Numerical simulations utilized the conservation equations of mass and momentum. The simulation showed that the fluid flowed down along the inner surface of the centrifugal reactor by forming intensive spiral trajectories. Although the high temperature gas generated by plasma influences the bottom of the reactor, no heat transfer in radial direction appeared. The decomposition efficiency of a typical VOCs, toluene, was found to be a maximum of 67% across the reactor, which was similar to the value (approximately 70%) for the lab-scale test.

Analysis of the Water Temperature Stratification-Maintaining Conditions Using CFD in Case of Intake of Deep, Low-Temperature Water (댐의 심층저온수 취수시 수온 성층화 유지 조건에 대한 CFD를 이용한 분석)

  • Lee, Jin-Sung;Cho, Soo;Sim, Kyung-Jong;Jang, Moon-Soung;Sohn, Jang-Yeul
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.2
    • /
    • pp.31-38
    • /
    • 2009
  • This study was conducted to forecast inner water temperature strata change by extracting deep water from a dam. For the methodology, the scope wherein the balance between the volume of low-temperature water intake through the virtual water intake opening as installed within the stored water area and the volume of water intake from the surrounding area is not destroyed was calculated through the CFD simulation technique using the computational fluid dynamics(CFD) interpretation method. This study suggested a supplementary method(diffuser) to avoid destroying the water temperature strata, and the effect was reviewed. In case of intake of the same volume, when the velocity of flow of water intake is reduced by increasing the pipe diameter, the destruction of water temperature strata can be minimized. When the area(height) where the intake of water is possible is low, a diffuser for interrupting the vertical direction inflow should be installed to secure favorable water intake conditions in case of water intake on the upper part. This study showed that there was no problem if the intake-enabled, low-temperature area was secured approximately 10m from the bottom when the scope that does not destroy the water temperature strata in case of water intake was forecast using the regression formula.

Development of Integrated Computational Fluid Dynamics(CFD) Environment using Opensource Code (오픈소스 코드를 이용한 통합 전산유체역학 환경 구축)

  • Kang, Seunghoon;Son, Sungman;Oh, Se-Hong;Park, Wonman;Choi, Choengryul
    • Convergence Security Journal
    • /
    • v.18 no.1
    • /
    • pp.33-42
    • /
    • 2018
  • CFD analysis is an analytical technique that applies a computer to the design and development of products across the entire industry for heat or fluid flow. This technology is used to shorten the development period and reduce costs through computerized simulation. However, the software used for CFD analysis is now required to use expensive foreign software. The Opensource CFD analysis software used in the proposed system has reliability of commercial CFD analysis software and has various user groups. However, for users who have expert knowledge, Opensource CFD software which supports only text interface environment, We have developed an environment that enables the construction of a CFD analysis environment for beginners as well as professionals. In addition, the proposed system supports the pre-processing (design and meshing) environment for CFD analysis and the environment for post-processing (result analysis & visualization), enabling the integrated CFD analysis process in one platform.

  • PDF

Design of Optimal Thermal Structure for DUT Shell using Fluid Analysis (유동해석을 활용한 DUT Shell의 최적 방열구조 설계)

  • Jeong-Gu Lee;Byung-jin Jin;Yong-Hyeon Kim;Young-Chul Bae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.4
    • /
    • pp.641-648
    • /
    • 2023
  • Recently, the rapid growth of artificial intelligence among the 4th industrial revolution has progressed based on the performance improvement of semiconductor, and circuit integration. According to transistors, which help operation of internal electronic devices and equipment that have been progressed to be more complicated and miniaturized, the control of heat generation and improvement of heat dissipation efficiency have emerged as new performance indicators. The DUT(Device Under Test) Shell is equipment which detects malfunction transistor by evaluating the durability of transistor through heat dissipation in a state where the power is cut off at an arbitrary heating point applying the rating current to inspect the transistor. Since the DUT shell can test more transistor at the same time according to the heat dissipation structure inside the equipment, the heat dissipation efficiency has a direct relationship with the malfunction transistor detection efficiency. Thus, in this paper, we propose various method for PCB configuration structure to optimize heat dissipation of DUT shell and we also propose various transformation and thermal analysis of optimal DUT shell using computational fluid dynamics.

Design of a drying system for a rollover carwash machine using CFD

  • Sabet, Seyyed M.M.;Marques, Jorge;Torres, Rui;Nova, Mario;Nobrega, Joao M.
    • Journal of Computational Design and Engineering
    • /
    • v.3 no.4
    • /
    • pp.398-413
    • /
    • 2016
  • This work describes the design and development of a new drying system for a rollover carwash machine with the support of numerical tools. The drying system is composed of a pair of stationary vertical dryers and a moveable horizontal dryer that can adjust itself to the contour of a vehicle. After the definition of the dryers' concept, their performance was assessed individually to check their internal flow pattern and to improve their airflow distribution. These issues are expected to provide feedback on redesign and geometric optimization of the dryers. After redesign of the dryers separately, the behaviour of the complete drying system was studied on actual vehicle models, representative of the shortest and tallest dimensions that can be washed with the existing carwash machine sector. The drying efficiency of the whole system was studied by calculation of shear stress distribution on various surfaces of a given vehicle. The results allowed concluding that the overall drying performance of the design system is very good and assure adequate drying on most vehicles surfaces. The results obtained from numerical studies were then validated with experimental measurements and a good agreement was found between the two. The procedure employed in this work can be applied to support the design and analysis of other mechanical drying systems.