• Title/Summary/Keyword: Computer Control System

Search Result 6,652, Processing Time 0.034 seconds

Improvement of Cognitive Rehabilitation Method using K-means Algorithm (K-MEANS 알고리즘을 이용한 인지 재활 훈련 방법의 개선)

  • Cho, Ha-Yeon;Lee, Hyeok-Min;Moon, Ho-Sang;Shin, Sung-Wook;Chung, Sung-Taek
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.6
    • /
    • pp.259-268
    • /
    • 2018
  • The purpose of this study is to propose a training method customized to the level of cognitive abilities to increase users' interest and engagement while using cognitive function training contents. The level of cognitive ability of the users was based on the clustering based on the users' information and Mini-Mental Statue Examination-Korea Child test score using the K-means algorithm applied collaborative filtering. The results were applied to the integrated cognitive function training system, and the contents order and difficulty level of the cognitive function training area were recommended to the user's cognitive ability level. Particularly, the contents difficulty control was designed to give a high immersion feeling by applying the 'flow theory' method that users can repeatedly feel tension and comfort. In conclusion, the user-customized cognitive function training method proposed in this paper can be expected to be more effective and rehabilitative results than existing therapists' subjective setting of contents order and difficulty level.

Reliability verification of cutting force experiment by the 3D-FEM analysis from reverse engineering design of milling tool (밀링 공구의 역 공학 설계에서 3D 유한요소 해석을 통한 절삭력 실험의 신뢰성 검증)

  • Jung, Sung-Taek;Wi, Eun-Chan;Kim, Hyun-Jeong;Song, Ki-Hyeok;Baek, Seung-Yub
    • Design & Manufacturing
    • /
    • v.13 no.2
    • /
    • pp.54-59
    • /
    • 2019
  • CNC(Computer Numerical Control) machine tools are being used in various industrial fields such as aircraft and automobiles. The machining conditions used in the mold industry are used, and the simulation and the experiment are compared. The tool used in the experiment was carried out to increase the reliability of the simulation of the cutting machining. The program used in the 3D-FEM (finite element method) was the AdvantEdge and predicted by down-milling. The tool model is used 3D-FEM simulation by using the cutting force, temperature prediction. In this study, we carried out the verification of cutting force by using a 3-axis tool dynamometer (Kistler 9257B) system when machining the plastic mold Steel machining of NAK-80. The cutting force experiment data using on the charge amplifier (5070A) is amplified, and the 3-axis cutting force data are saved as a TDMS file using the Lab-View based program using on NI-PXIe-1062Q. The machining condition 7 was the most similar to the simulation and the experimental results. The material properties of the NAK-80 material and the simulation trends reflected in the reverse design of the tool were derived similarly to the experimental results.

Development of an Improved Geometric Path Tracking Algorithm with Real Time Image Processing Methods (실시간 이미지 처리 방법을 이용한 개선된 차선 인식 경로 추종 알고리즘 개발)

  • Seo, Eunbin;Lee, Seunggi;Yeo, Hoyeong;Shin, Gwanjun;Choi, Gyeungho;Lim, Yongseob
    • Journal of Auto-vehicle Safety Association
    • /
    • v.13 no.2
    • /
    • pp.35-41
    • /
    • 2021
  • In this study, improved path tracking control algorithm based on pure pursuit algorithm is newly proposed by using improved lane detection algorithm through real time post-processing with interpolation methodology. Since the original pure pursuit works well only at speeds below 20 km/h, the look-ahead distance is implemented as a sigmoid function to work well at an average speed of 45 km/h to improve tracking performance. In addition, a smoothing filter was added to reduce the steering angle vibration of the original algorithm, and the stability of the steering angle was improved. The post-processing algorithm presented has implemented more robust lane recognition system using real-time pre/post processing method with deep learning and estimated interpolation. Real time processing is more cost-effective than the method using lots of computing resources and building abundant datasets for improving the performance of deep learning networks. Therefore, this paper also presents improved lane detection performance by using the final results with naive computer vision codes and pre/post processing. Firstly, the pre-processing was newly designed for real-time processing and robust recognition performance of augmentation. Secondly, the post-processing was designed to detect lanes by receiving the segmentation results based on the estimated interpolation in consideration of the properties of the continuous lanes. Consequently, experimental results by utilizing driving guidance line information from processing parts show that the improved lane detection algorithm is effective to minimize the lateral offset error in the diverse maneuvering roads.

A Secure Subscription-Push Service Scheme Based on Blockchain and Edge Computing for IoT

  • Deng, Yinjuan;Wang, Shangping;Zhang, Qian;Zhang, Duo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.2
    • /
    • pp.445-466
    • /
    • 2022
  • As everything linking to the internet, people can subscribe to various services from a service provider to facilitate their lives through the Internet of Things (IoT). An obligatory thing for the service provider is that they should push the service data safely and timely to multiple IoT terminal devices regularly after the IoT devices accomplishing the service subscription. In order to control the service message received by the legal devices as while as keep the confidentiality of the data, the public key encryption algorithm is utilized. While the existing public encryption algorithms for push service are too complicated for IoT devices, and almost of the current subscription schemes based on push mode are relying on centralized organization which may suffer from centralized entity corruption or single point of failure. To address these issues, we design a secure subscription-push service scheme based on blockchain and edge computing in this article, which is decentralized with secure architecture for the subscription and push of service. Furthermore, inspired by broadcast encryption and multicast encryption, a new encryption algorithm is designed to manage the permissions of IoT devices together with smart contract, and to protect the confidentiality of push messages, which is suitable for IoT devices. The edge computing nodes, in the new system architecture, maintain the blockchain to ensure the impartiality and traceability of service subscriptions and push messages, meanwhile undertake some calculations for IoT devices with limited computing power. The legalities of subscription services are guaranteed by verifying subscription tags on the smart contract. Lastly, the analysis indicates that the scheme is reliable, and the proposed encryption algorithm is safe and efficient.

A study on liquid crystal-based electrical polarization control technology for polarized image monitoring device (편광 영상감시 장치를 위한 액정 기반 전기적 편광 조절 기술 연구)

  • Ahn, Hyeon-Sik;Lim, Seong-Min;Jang, Eun-Jeong;Choi, Yoonseuk
    • Journal of IKEEE
    • /
    • v.26 no.3
    • /
    • pp.416-421
    • /
    • 2022
  • In this study, we present a fully automated system that combines camera technology with liquid crystal technology to create a polarization camera capable of detecting the partial linear polarization of light reflected from an object. The use of twisted nematic (TN) liquid crystals that electro-optically modulate the polarization plane of light eliminates the need to mechanically rotate the polarizing filter in front of the camera lens. Images obtained using these techniques are imaged by computer software. In addition, liquid crystal panels have been produced in a square shape, but many camera lenses are usually round, and lighting or other driving units are installed around the lens, so space is optimized through the application of a circular liquid crystal display. Through the development of this technology, an electrically switchable and space-optimized liquid crystal polarizer is developed.

Thermal Change Prediction of Magnetic Switch Using Regression Analysis (회귀 분석 기법을 활용한 전자 개폐기의 온도 변화예측)

  • Moon, Cheolhan;Yeon, Yeong-Mo;Kim, Seung-Hee;Min, Jun-Ki
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.6
    • /
    • pp.749-755
    • /
    • 2022
  • Electricity is essential energy in modern society, such as being used in various industries. However, the rate of fires occurring on electric wiring to deal with it is very high. In this work, we implemented a system to predict the temperature change of an electric circuit through analysis using various regression models. To do so, we collected the temperature data of 27 types of magnetic switches which control electric circuits as well as trained the regression models by using the collected temperature data. In our experiments, we confirmed that the regression models can be trained at a sufficiently usable level since the difference between the actual temperature and predicted temperature is about 4℃. The results of our work will be useful to predict the temperature of electric circuits and preventing fires on them.

Application Development and Type Test for Smart Inverter Based on IEEE 1547-2018 Utilizing Power HILS (Power HILS를 활용한 IEEE 1547-2018 기반 스마트 인버터의 기술개발 및 형식시험 연구)

  • Shin, Danbi;Kang, Moses;Lee, Hyuna;Hong, Seonri;Yoon, Gihwan;Baek, Jongbok
    • Journal of IKEEE
    • /
    • v.26 no.1
    • /
    • pp.1-9
    • /
    • 2022
  • In order to secure the reliability of the power system and to increase the penetration level of distributed energy resources (DERs), requirements such as IEEE 1547 have been revised to strengthen the grid connection standards for DER. This paper proposes a control scheme for smart inverter functions based on IEEE 1547-2018 that satisfy these standards, and introduces a power HILS-based test platform built for verification of smart inverter. Among the smart inverter functions, Volt-var and Frequency-watt allow the curve to be set from the upper level to comply with the interoperability and operation time of enable signals for each function are controlled by references from the upper level. According to the requirement, Volt-var and Frequency-watt are performed via power HILS platform and verified through the measurement results that all of the specified type tests were satisfied.

Construction Methods of Switching Network for a Small and a Large Capacity AMT Switching System (소용량 및 대용량의 ATM시스템에 적합한 스위칭 망의 구성 방안)

  • Yang, Chung-Ryeol;Kim, Jin-Tae
    • The Transactions of the Korea Information Processing Society
    • /
    • v.3 no.4
    • /
    • pp.947-960
    • /
    • 1996
  • The primary goal for developing high performance ATM switching systems is to minimized the probability of cell loss, cell delay and deterioration of throughput. ATM switching element that is the most suitable for this purpose is the shared buffer memory switch executed by common random access memory and control logic. Since it is difficult to manufacture VLIS(Very Large Scale Integrated circuit) as the number of input ports increased, the used of switching module method the realizes 32$\times$32, 150 Mb/s switch utilizing 8$\times$8, 600Mb/s os 16$\times$16, 150Mb/s unit switch is latest ATM switching technology for small and large scale. In this paper, buffer capacity satisfying total-memory-reduction effect by buffer sharing in a shared buffer memory switch are analytically evalu ated and simulated by computer with cell loss level at traffic conditions, and also features of switching network utilizing the switching module methods in small and large-capacity ATM switching system is analized. Based on this results, the structure in outline of 32$\times$32(4.9Gb/s throughput), 150Mb/s switches under research in many countries is proposed, and eventually, switching-network structure for ATM switching system of small and large and capacity satisfying with above primary goals is suggested.

  • PDF

Driver's Status Recognition Using Multiple Wearable Sensors (다중 웨어러블 센서를 활용한 운전자 상태 인식)

  • Shin, Euiseob;Kim, Myong-Guk;Lee, Changook;Kang, Hang-Bong
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.6 no.6
    • /
    • pp.271-280
    • /
    • 2017
  • In this paper, we propose a new safety system composed of wearable devices, driver's seat belt, and integrating controllers. The wearable device and driver's seat belt capture driver's biological information, while the integrating controller analyzes captured signal to alarm the driver or directly control the car appropriately according to the status of the driver. Previous studies regarding driver's safety from driver's seat, steering wheel, or facial camera to capture driver's physiological signal and facial information had difficulties in gathering accurate and continuous signals because the sensors required the upright posture of the driver. Utilizing wearable sensors, however, our proposed system can obtain continuous and highly accurate signals compared to the previous researches. Our advanced wearable apparatus features a sensor that measures the heart rate, skin conductivity, and skin temperature and applies filters to eliminate the noise generated by the automobile. Moreover, the acceleration sensor and the gyro sensor in our wearable device enable the reduction of the measurement errors. Based on the collected bio-signals, the criteria for identifying the driver's condition were presented. The accredited certification body has verified that the devices has the accuracy of the level of medical care. The laboratory test and the real automobile test demonstrate that our proposed system is good for the measurement of the driver's condition.

System Development of Cubsat SIGMA(KHUSAT-3)

  • Shin, Jehyuck;Lee, Seongwhan;Lee, Jung-Kyu;Lee, Hyojeong;Lee, Jeongho;Seo, Junwon;Shin, Youra;Jeong, Seonyeong;Cheon, Junghoon;Kim, Hanjun;Lim, Jeonghyun;Lee, Junmin;Jin, Ho;Nam, Uk-Won;Kim, Sunghwan;Lee, Regina;Kim, Hyomin;Lessard, Marc R.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.106-106
    • /
    • 2014
  • SIGMA (Scientific cubesat with Instrument for Global Magnetic field and rAdiation)는 근 지구공간에서 우주방사선량 측정과 자기장 변화 검출의 과학적 목적과 교육적 목적을 가지고 개발하고 있는 초소형 큐브위성이다. $100mm{\times}100mm{\times}340.5mm$의 크기로 약 3.6 kg의 무게를 가지며, 탑재체는 방사선에 대하여 인체와 동일한 산란 흡수 특성을 가진 Tissue Equivalent Proportional Counter (TEPC)와 자기장 측정을 위한 Magnetometer (Mag)이다. 위성체는 구조계, 자세제어계, 전력계, 명령 및 데이터처리계, 통신계로 구성되어있다. 구조계는 위성의 뼈대인 Chassis와 Mag deployer로 이루어져있고, 위성의 안정적인 자세유지를 목적으로 Attitude Control System (ACS) Board와 Torque Coil이 자세제어계로 구성된다. 전력의 생산과 공급 및 충전은 태양전지판과 Electrical Power System (EPS), 리튬 배터리로 구성된 전력계에서 이뤄지며, 명령 및 데이터처리계는 On Board Computer (OBC)와 Instrument Interface board (IIB)를 중심으로 서브시스템의 명령체계와 데이터처리를 다룬다. 통신계는 Uplink인 VHF 안테나와 Downlink인 UHF, S-band 안테나로 구성되며 지상과 명령을 송수신한다. SIGMA는 타임인터럽트 기능을 활용한 Flight Software (FSW)로 운용되며 임무에 따른 6가지 모드의 시나리오로 위성을 운용한다. 이에 SIGMA의 개발과 테스트 결과를 소개한다. 본 큐브위성 개발기술을 바탕으로 향후 천문관측용 위성에도 활용할 예정이다.

  • PDF