최근 국내 여성의 유방암 발생율은 1위를 차지하며 그 비율 또한 나날이 늘어가고 있는 추세이다. 하지만 유방암은 다른 암에 비해 5년간 관찰 생존율이 약 76%로 갑상선에 이어 두 번째의 생존율을 보이며, 이는 조기발견의 중요성을 다시 한번 상기시키게 한다. 하지만 국내에서 사용되는 유방암 조기검진 방법에는 Mammography(유방촬영술)와 초음파 진단 두 가지가 주를 이루고 있으나 촬영과정 및 장비에 따른 오차로 인한 객관화된 정보생성 부족 및 전달의 부족으로 문제점이 대두되고 있다. 본 연구에서는 Mamography 및 초음파 유방 진단술을 이용하여 전문의의 의사결정에 도움을 줄 수 있는 CAD(Computer Aided Diagnosis) 시스템의 유방암 진단의 특징을 이용, 전문의 관점의 모델링을 기술해보고자 한다.
최근 몇 년간 방사선 의학진단과 관련된 연구가 한층 높아진 가운데 유방암은 여성의 암 중에서 1위를 차지하고 조기에 진단하고 치료하기 위한 국가적인 노력이 필요한 시점이다. 이렇듯 여성들의 유방암 발생빈도수가 급증하면서 대두 되고 있는 것이 조기 진단방법인 Mammography와 초음파 진단이며 그로인하여 발생하는 오진률 역시 많은 연구가 진행 되고 있다. 먼저 Mammography 및 초음파 진단의 문제점 보면 첫째 촬영과정에서의 오차, 둘째 영상의 선명도 ,셋째 전문의의 판독에 대한오차, 넷째 의사의 경험으로 진단함으로 표준화가 존재하지 않는다는 공통적인 문제점을 가지고 있다. 본 연구에서는 CAD 시스템의 프레임웍 및 요소 기술을 제시하여 의사의 진단을 보조적 수행이 보다 수월하도록 하고자 한다. 본 연구에서는 CAD시스템의 기능은 Detection기능(Image enhancement, Morphology, segment detection)과 Diagnosis기능( Neural Natwork등을 이용하여 증상을 판단)이다. 또한 과거 자료를 이용한 변이 및 변화를 예측함으로써 향후 있을 위험요소에 대비가 가능한 모듈과 전문의사가 대화형으로 빠르게 진단지식을 구축할 수 있는 지능형, 대화형 온라인 진단기능을 추가함으로써 외국의 CAD시스템과는 많은 차이가 있다고 볼 수 있다.
We investigated whether the CT images of hepatic lesions could be analyzed by computer-aided diagnosis (CAD) tool. We retrospectively reanalyzed 14 liver CT images (10 hepatocellular cancers and 4 benign liver lesions; patients who presented with hepatic masses). The hepatic lesions on CT were segmented by rectangular ROI technique and the morphologic features were extracted and quantitated using fractal texture analysis. The contrast enhancement of hepatic lesions was also quantified and added to the differential diagnosis. The best discriminating function combining the textural features and the values of contrast enhancement of the lesions was created using linear discriminant analysis. Textural feature analysis showed moderate accuracy in the differential diagnosis of hepatic lesions, but statistically insignificant. Combining textural analysis and contrast enhancement value resulted in improved diagnostic accuracy, but further studies are needed.
The objective of this paper is to design segmentation algorithm for applying the breast ultrasound image to CAD(Computer Aided Diagnosis). This study is conducted after understanding limits, used algorithm and demands of CAD system by interviewing with a medical doctor and analyzing related works based on a general CAD framework that is consisted of five step-establishment of plan, analysis of needs, design, implementation and test & maintenance. Detection function of CAD is accomplished by Canny algorithm and arithmetic operations for segmentation. In addition to, long computing time is solved by extracting ROI (Region Of Interests) and applying segmentation technical methods based morphology algorithm. Overall course of study is conducted by verification of medical doctor. And validity and verification are satisfied by medical doctor's confirmation. Moreover, manual segmentation of related works, restrictions on the number of tumor and dependency of image resolution etc. was solved. This study is utilized as a support system aided doctors' subjective diagnosis even though a lot of future studies is needed for entire application of CAD system.
지난 몇년간 유방 초음파영상을 이용한 신호 및 영상처리 기술과 자동 영상 최적화 기술, 유방 종괴 자동 검출 및 분류 기술 등, 컴퓨터 보조 진단(computer-aided diagnosis, CAD)을 활용하는 연구들이 활발히 진행되어지고 있다. 컴퓨터진단기술이 개발될수록 암의 조기 발견이 정확하고 빠르게 진행되어 건강 보험과 환자의 검사 빙용을 줄일 수 있고 조직 검사에 대한 불안감을 없앨 수 있을 것으로 기대된다. 본 논문에서는 GLCM(gray level co-occurrence matrix)을 사용하여 초음파 영상에서 종양의 정량적 분석을 진행하여 컴퓨터보조 진단에 활용 가능성을 실험하였다.
Objective: Artificial intelligence-based computer-aided diagnosis (AI-CAD) is increasingly used in mammography. While the continuous scores of AI-CAD have been related to malignancy risk, the understanding of how to interpret and apply these scores remains limited. We investigated the positive predictive values (PPVs) of the abnormality scores generated by a deep learning-based commercial AI-CAD system and analyzed them in relation to clinical and radiological findings. Materials and Methods: From March 2020 to May 2022, 656 breasts from 599 women (mean age 52.6 ± 11.5 years, including 0.6% [4/599] high-risk women) who underwent mammography and received positive AI-CAD results (Lunit Insight MMG, abnormality score ≥ 10) were retrospectively included in this study. Univariable and multivariable analyses were performed to evaluate the associations between the AI-CAD abnormality scores and clinical and radiological factors. The breasts were subdivided according to the abnormality scores into groups 1 (10-49), 2 (50-69), 3 (70-89), and 4 (90-100) using the optimal binning method. The PPVs were calculated for all breasts and subgroups. Results: Diagnostic indications and positive imaging findings by radiologists were associated with higher abnormality scores in the multivariable regression analysis. The overall PPV of AI-CAD was 32.5% (213/656) for all breasts, including 213 breast cancers, 129 breasts with benign biopsy results, and 314 breasts with benign outcomes in the follow-up or diagnostic studies. In the screening mammography subgroup, the PPVs were 18.6% (58/312) overall and 5.1% (12/235), 29.0% (9/31), 57.9% (11/19), and 96.3% (26/27) for score groups 1, 2, 3, and 4, respectively. The PPVs were significantly higher in women with diagnostic indications (45.1% [155/344]), palpability (51.9% [149/287]), fatty breasts (61.2% [60/98]), and certain imaging findings (masses with or without calcifications and distortion). Conclusion: PPV increased with increasing AI-CAD abnormality scores. The PPVs of AI-CAD satisfied the acceptable PPV range according to Breast Imaging-Reporting and Data System for screening mammography and were higher for diagnostic mammography.
질감 정보는 객체 인식과 분류에서 중요한 역할을 하고 있다. 정확한 질환 판별을 위해 분류에서 사용되는 질감 특징은 식별성이 높아야 한다. 본 논문에서는 질감-기반 영상 검색 및 폐기종 진단을 위해 컴퓨터 조력진단(Computer-Aided Diagnosis) 시스템을 위한 새로운 질감 기술자를 제안한다. 제안한 질감 기술자는 이웃화소간의 차이값과 중심화소와 이웃화소간의 차이 값의 결합에 기반을 두고 있어 결합된 주변화소 차이(Combined Neighborhood Difference; CND)라고 한다. 화소들간의 CND는 비교후 이진 코드워드로 변환된다. 그다음에, 식별성이 높은 값을 생성하기 위하여 이진 계수가 코드워드에 할당된다. 이와 같은 값들의 분포가 계산되어 질감 특징 벡터를 구성한다. Outex와 Brodatz 데이터집합을 이용한 질감 특징 분류에 관련하여 CND는 92.5%의 정확성을 보이는 데 비해, LBP, LND와 Gabor 픽터는 89.3%, 90.7%와 83.6%의 정확성을 각각 보여준다. 본 논문에서는 CND를 이용한 폐기종의 진단 기능을 CAD 시스템에서 구현하였다.
Journal of the Korean Association of Oral and Maxillofacial Surgeons
/
제39권4호
/
pp.197-199
/
2013
Three-dimensional (3D) computed tomography image models are helpful in reproducing the maxillofacial area; however, they do not necessarily provide an accurate representation of dental occlusion and the state of the teeth. Recent efforts have focused on improvement of dental imaging by replacement of computed tomography with other detailed digital images. Unfortunately, despite the advantages of medical simulation software in dentofacial analysis, diagnosis, and surgical simulation, it lacks adequate registration tools. Following up on our previous report on orthognathic simulation surgery using computer-aided design/computer-aided manufacturing (CAD/CAM) software, we recently used the registration functions of a CAD/CAM platform in conjunction with surgical simulation software. Therefore, we would like to introduce a new technique, which involves use of the registration functions of CAD/CAM software followed by transfer of the images into medical simulation software. This technique may be applicable when using various registration function tools from different software platforms.
본 논문에는 관심 영역의 폐실질 영역을 양성과 악성 결절의 분류를 위한 특징인자에 포함으로써 분류성능을 개선하였다. CT를 통해 확인되는 매우 작은 폐결절(4~10mm)은 고형 종양 내에 CT 데이터 복셀 수가 제한되어 기존 컴퓨터보조 진단도구를 통해 처리하기가 어렵다. 이러한 아주 작은 폐 결절의 경우 분석을 위해 주변의 실질을 포함하여 특징인자를 추출하는 것이 CT 복셀 세트를 증가시킬 수 있으며, CT 스캐너와 매개 변수에 대한 컴퓨터 보조진단도구의 유연성을 확보함으로써 진단 성능을 개선할 수 있다. 나이브 베이스와 SVM 약분류기를 이용하는 아다부스트 학습을 통해 304개의 특징인자로부터 유효한 특징인자를 결정하였으며, 제안한 방법을 COPDGene 데이터에 적용한 결과 100%의 정확도, 민감도 및 특이도의 결과를 획득하여 컴퓨터 보조진단에 유용하게 사용될 수 있음을 보였다.
Park, Hyojung;Kim, Jin-Sung;Park, Hee Chul;Oh, Dongryul
Radiation Oncology Journal
/
제32권3호
/
pp.116-124
/
2014
Purpose: To investigate the frequency and clinical significance of detected incidental lung nodules found on computed tomography (CT) simulation images for hepatocellular carcinoma (HCC) using computer-aided diagnosis (CAD) and a physician review. Materials and Methods: Sixty-seven treatment-$na{\ddot{i}}ve$ HCC patients treated with transcatheter arterial chemoembolization and radiotherapy (RT) were included for the study. Portal phase of simulation CT images was used for CAD analysis and a physician review for lung nodule detection. For automated nodule detection, a commercially available CAD system was used. To assess the performance of lung nodule detection for lung metastasis, the sensitivity, negative predictive value (NPV), and positive predictive value (PPV) were calculated. Results: Forty-six patients had incidental nodules detected by CAD with a total of 109 nodules. Only 20 (18.3%) nodules were considered to be significant nodules by a physician review. The number of significant nodules detected by both of CAD or a physician review was 24 in 9 patients. Lung metastases developed in 11 of 46 patients who had any type of nodule. The sensitivities were 58.3% and 100% based on patient number and on the number of nodules, respectively. The NPVs were 91.4% and 100%, respectively. And the PPVs were 77.8% and 91.7%, respectively. Conclusion: Incidental detection of metastatic nodules was not an uncommon event. From our study, CAD could be applied to CT simulation images allowing for an increase in detection of metastatic nodules.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.