• Title/Summary/Keyword: Computational system

Search Result 6,557, Processing Time 0.031 seconds

Free Vibration Analysis of Axisymmetric Cylindrical Shell by Sylvester-Transfer Stiffness Coefficient Method (실베스터-전달강성계수법에 의한 축대칭 원통형 셸의 자유진동 해석)

  • Choi, Myung-Soo;Yeo, Dong-Jun
    • Journal of Power System Engineering
    • /
    • v.17 no.2
    • /
    • pp.46-55
    • /
    • 2013
  • In this paper, the computational algorithm for free vibration analysis of an axisymmetric cylindrical shell is formulated by the Sylvester-transfer stiffness coefficient method (S-TSCM) which combines the Sylvester's inertia theorem and the transfer stiffness coefficient method. After the computational programs for obtaining the natural frequencies and natural modes of the axisymmetric cylindrical shell are made by the S-TSCM and the finite element method (FEM), the computational results which are natural frequencies, natural modes, and computational times by both methods are compared. From the computational results, we can confirm that S-TSCM has the reliability in the free vibration analysis of the axisymmetric cylindrical shell and is superior to FEM in the viewpoint of computational times.

Computational Complexity Analysis of Cascade AOA Estimation Algorithm Based on FMCCA Antenna

  • Kim, Tae-yun;Hwang, Suk-seung
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.11 no.2
    • /
    • pp.91-98
    • /
    • 2022
  • In the next generation wireless communication system, the beamforming technique based on a massive antenna is one of core technologies for transmitting and receiving huge amounts of data, efficiently and accurately. For highly performed and highly reliable beamforming, it is required to accurately estimate the Angle of Arrival (AOA) for the desired signal incident to an antenna. Employing the massive antenna with a large number of elements, although the accuracy of the AOA estimation is enhanced, its computational complexity is dramatically increased so much that real-time communication is difficult. In order to improve this problem, AOA estimation algorithms based on the massive antenna with the low computational complexity have been actively studied. In this paper, we compute and analyze the computational complexity of the cascade AOA estimation algorithm based on the Flexible Massive Concentric Circular Array (FMCCA). In addition, its computational complexity is compared to conventional AOA estimation techniques such as the Multiple Signal Classification (MUSIC) algorithm with the high resolution and the Only Beamspace MUSIC (OBM) algorithm.

Characteristics of HOMO and LUMO Potentials by Altering Substituents: Computational and Electrochemical Determination

  • Kim, Young-Sung;Kim, Sung-Hoon;Kim, Tae-Kyung;Son, Young-A
    • Textile Coloration and Finishing
    • /
    • v.20 no.5
    • /
    • pp.41-46
    • /
    • 2008
  • Recently, computational calculation of molecular energy potentials and electrochemical reduction/oxidation behaviors are of very importance in view point of prediction of dye's properties such as energy levels and bandgaps of absorption. This can be influenced by their different constituents or substituents in chromogen molecules. Structural conformations and properties with computational modeling calculation are numerically simulated, which are fully or partly based on fundamental laws of physics. In addition, cyclic voltammetric measurement was used to obtain the experimental redox potential values, which were compared to the computed simulation values.

VALIDATION OF A DESIGN CODE FOR SODIUM-TO-SODIUM HEAT EXCHANGERS BY UTILIZING COMPUTATIONAL FLUID DYNAMICS (전산유체역학을 이용한 소듐-소듐 열교환기 설계코드의 검증)

  • Kim, D.;Eoh, J.H.;Lee, T.H.
    • Journal of computational fluids engineering
    • /
    • v.21 no.1
    • /
    • pp.19-29
    • /
    • 2016
  • A Prototype Gen-IV Sodium-cooled Fast Reactor which is one of the $4^{th}$ generation nuclear reactors is in development by Korea Atomic Energy Research Institute. The reactor is composed of four main fluid systems which are categorized by its functions, i.e., Primary Heat Transport System, Intermediate Heat Transport System, Decay Heat Removal System and Sodium-Water Reaction Pressure Relief System. The coolant of the reactor is liquid sodium and sodium-to-sodium heat exchangers are installed at the interfaces between two fluid systems, Intermediate Heat Exchangers between the Primary Heat Transport System and the Intermediate Heat Transport System and Decay Heat Exchangers between the Primary Heat Transport System and the Decay Heat Removal System. For the design and performance analysis of the Intermediate Heat Exchanger and the Decay Heat Exchanger, a computer code was written during previous step of research. In this work, the computer code named "SHXSA" has been validated preliminarily by computational fluid dynamics simulations.

COMPUTATIONAL STUDY OF GLASS FIBER DRAWING PROCESS IN A DRAW FURNACE OF OPTICAL FIBER MASS MANUFACTURING SYSTEM (광섬유 대량생산용 인출퍼니스 내 유리섬유 인출공정의 전산해석)

  • Kim, K.;Kwak, H.S.;Kim, D.
    • Journal of computational fluids engineering
    • /
    • v.18 no.4
    • /
    • pp.69-73
    • /
    • 2013
  • Mass manufacturing of optical fiber includes the process of very thin glass fiber drawing by heating and softening the high purity silica preform and applying the draw tension on the softened tip of preform neck-down profile in a draw furnace. In this computational study, this process is numerically modeled with simplified geometry of the draw furnace which is comprised of essential parts such as concentric graphite heater, muffle tube, and insulation surrounding the heater. The iterative computational scheme is employed between one-dimensional model of neck-down profile prediction and two-dimensional axisymmetric thermo-fluid CFD computation of radiative heating and working gas convection. The computational results show the experimentally observed neck-down profile in heated section of preform, while yielding the reasonable values of draw tension and heater wattage. Also, this study analyzes and discusses the effects of heating conditions such as heater length and temperature on several important aspects of glass fiber drawing process.

Review of Domestic Literature Based on System Mapping for Computational Thinking Assessment (컴퓨팅 사고력 평가에 관한 시스템 매핑 기반 국내 문헌 고찰)

  • Choi, Sook-Young
    • The Journal of Korean Association of Computer Education
    • /
    • v.22 no.6
    • /
    • pp.19-34
    • /
    • 2019
  • With the advent of the 4th Industrial Revolution, the importance of solving problems through computing has been emphasized, and software education to improve computational thinking as a core competency has been designated as an essential subject. In order for education for computational thinking to be effective, appropriate tools for evaluating computational thinking must be supported. While studies on computational thinking have been conducted in the meantime, there have been no systematic studies on such evaluation-related studies. This study analyzed the related studies on the computational thinking assessment conducted in Korea and analyzed the previous research of the evaluation tools, evaluation criteria, and evaluation methods. Based on this, the implications for the study of computational thinking evaluation method were suggested.

A Practical Exciter Model Reduction Approach For Power System Transient Stability Simulation

  • Kim, Soobae
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.10
    • /
    • pp.89-96
    • /
    • 2015
  • Explicit numerical integration methods for power system transient stability simulation require very small time steps to avoid numerical instability. The EXST1 exciter model is a primary source of fast dynamics in power system transients. In case of the EXST1, the required small integration time step for entire system simulation increases the computational demands in terms of running time and storage. This paper presents a practical exciter model reduction approach which allows the increase of the required step size and thus the method can decrease the computational demands. The fast dynamics in the original EXST1 are eliminated in the reduced exciter model. The use of a larger time step improves the computational efficiency. This paper describes the way to eliminate the fast dynamics from the original exciter model based on linear system theory. In order to validate the performance of the proposed method, case studies with the GSO-37 bus system are provided. Comparisons between the original and reduced models are made in simulation accuracy and critical clearing time.

Hybrid Type II fuzzy system & data mining approach for surface finish

  • Tseng, Tzu-Liang (Bill);Jiang, Fuhua;Kwon, Yongjin (James)
    • Journal of Computational Design and Engineering
    • /
    • v.2 no.3
    • /
    • pp.137-147
    • /
    • 2015
  • In this study, a new methodology in predicting a system output has been investigated by applying a data mining technique and a hybrid type II fuzzy system in CNC turning operations. The purpose was to generate a supplemental control function under the dynamic machining environment, where unforeseeable changes may occur frequently. Two different types of membership functions were developed for the fuzzy logic systems and also by combining the two types, a hybrid system was generated. Genetic algorithm was used for fuzzy adaptation in the control system. Fuzzy rules are automatically modified in the process of genetic algorithm training. The computational results showed that the hybrid system with a genetic adaptation generated a far better accuracy. The hybrid fuzzy system with genetic algorithm training demonstrated more effective prediction capability and a strong potential for the implementation into existing control functions.