• Title/Summary/Keyword: Computational system

Search Result 6,523, Processing Time 0.03 seconds

Efficient and User-Friendly Image Retrieval System Based on Query by Visual Keys

  • Serata, M.;Sakuma, K.;Stejic, Z.;Kawamoto, K.;Nobuhara, H.;Yoshida, S.;Hirota, K.
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.451-454
    • /
    • 2003
  • A new query method, called query by visual keys, is proposed to aim easy operation and efficient region-based image retrieval (RBIR). Visual keys are constructed from representative regions/subimages in a given image database, and the database is indexed with visual keys. A system on PC is presented, where text retrieval techniques are applied to the image retrieval with visual keys. Experimental results show that one retrieval is done within 4ms and that the proposed system achieves the comparable retrieval precision (with user-friendly operation and low computational cost) to conventional region based image retrieval systems

  • PDF

Development of Web-based High Throughput Computing Environment and Its Applications (웹기반 대용량 계산환경 구축 및 응용사례)

  • Jeong, Min-Joong;Kim, Byung-Sang
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.719-724
    • /
    • 2007
  • Many engineering problems often require the large amount of computing resources for iterative simulations of problems treating many parameters and input files. In order to overcome the situation, this paper proposes an e-Science based computational system. The system exploits the Grid computing technology to establish an integrated web service environment which supports distributed high throughput computational simulations and remote executions. The proposed system provides an easy-to-use parametric study service where a computational service includes real time monitoring. To verify usability of the proposed system, two kinds of applications were introduced. The first application is an Aerospace Integrated Research System (e-AIRS). The e-AIRS adapts the proposed computational system to solve CFD problems. The second one is design and optimization of protein 3-dimensional structures.

  • PDF

Study on Construction of Computational Steering Systems for Grid Environment (그리드 환경에서의 Computational Steering System에 관한 연구)

  • Koo, Gee-Bum;Park, Hyoung-Woo;Lee, Sang-San
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2002.11a
    • /
    • pp.233-236
    • /
    • 2002
  • Computational steering system은 계산 및 응용 과학자들이 컴퓨터를 이용해서 보다 효과적이고 효율적인 방법으로 시뮬레이션을 진행하고 제어하기 위해서 제안되었다. 하지만 시간이 흐를수록 시뮬레이션의 규모가 커지면서 단일 컴퓨터 시스템으로 시뮬레이션을 수행하는 것이 어렵게 되었다. 이 문제를 해결하기 위해서 최근 새로운 형태의 슈퍼컴퓨팅 환경으로 주목받기 시작한 그리드와 computational steering system을 연계하는 방법에 대한 연구가 진행되고 있다. 본 논문에서는 computational steering system의 개념과 함께 그리드에서 운용 가능한 대표적인 computational steering system을 소개하고 KISTI 슈퍼컴퓨팅센터에서 구축하고 있는 국가 그리드 기반인 N* Grid를 위한 computational steering system의 구현 방향을 제시하고자 한다.

  • PDF

Analysis for the Stability of a Haptic System with the Computational Time-varying Delay (가변적인 계산시간지연에 의한 햅틱 시스템에서의 안정성 영향 분석)

  • Lee, Kyungno
    • Journal of Institute of Convergence Technology
    • /
    • v.5 no.2
    • /
    • pp.37-42
    • /
    • 2015
  • This paper presents the effects of the computational time-varying delay on the stability of the haptic system that includes a virtual wall and a first-order-hold method. The model of a haptic system includes a haptic device model with a mass and a damper, a virtual wall model, a first-order-hold model and a computational time-varying delay model. In this paper, the maximum of the computational time-varying delay is assumed to be as much as the sampling time. Using the simulation, it is analyzed how the sample-hold methods and the computational time-varying delay affect the maximum available stiffness. As the maximum of computational time-varying delay increases, the maximal available stiffness of a virtual wall model is reduced.

A stdudy of Knowledge management system needs and efficient hospital computerized operating

  • Yun, Young Gi;Chung, Young Suk;Park, Koo Rack
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.10
    • /
    • pp.135-142
    • /
    • 2016
  • In this paper, we propose a plan for the introduction of a knowledge-based system proposed by the traditional computing sciences, in order to operate the computer system computerized hospital workers effectively. Hospital computational features of the operating system for this purpose, were made about the working conditions, computational difficulties of the hospital administrator. It is necessary for a knowledge management system for results-effective IT system operational review findings apply to the hospital, where a hospital computer system having features and hospitals computational workers must be resolved on the technical and environmental constraints with It became aware of the need. This study further shows that an effective hospital computer system to derive additional operating a variety of issues to consider for the base and the introduction of a knowledge management system can gradually solve the problem.

Performance improvement of single-layer neural network with feedback by analyzing the computational energy function (계산 에너지 함수 분석을 통한 궤환성을 갖는 단층신경회로망의 성능개선)

  • 고경희;강민제
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.34C no.12
    • /
    • pp.54-60
    • /
    • 1997
  • A new method to neglect the third term of the computational energy expression in the single-layer neural network with feedback is introduced. The system often converges to local minima instead of to global minima, because the computational energy is not matched exactly with the cost function being optimized. One of the factors causing these tow functions different is the third term of computational enegy expression. Regarding this third term energy very small, it is always ignored in designing the system. However, a sthe system growing, this third term energy is also growing and this grown term makes the computational energy function much different from the cost function. In results of differency between two functions, system converges to local minima more than before. In this paper, a new method to neglect te third term energy is introduced, so that the system with tis new method has been imroved.

  • PDF

Service Prediction-Based Job Scheduling Model for Computational Grid (계산 그리드를 위한 서비스 예측 기반의 작업 스케줄링 모델)

  • Jang Sung-Ho;Lee Jong-Sik
    • Journal of the Korea Society for Simulation
    • /
    • v.14 no.3
    • /
    • pp.91-100
    • /
    • 2005
  • Grid computing is widely applicable to various fields of industry including process control and manufacturing, military command and control, transportation management, and so on. In a viewpoint of application area, grid computing can be classified to three aspects that are computational grid, data grid and access grid. This paper focuses on computational grid which handles complex and large-scale computing problems. Computational grid is characterized by system dynamics which handles a variety of processors and jobs on continuous time. To solve problems of system complexity and reliability due to complex system dynamics, computational grid needs scheduling policies that allocate various jobs to proper processors and decide processing orders of allocated jobs. This paper proposes a service prediction-based job scheduling model and present its scheduling algorithm that is applicable for computational grid. The service prediction-based job scheduling model can minimize overall system execution time since the model predicts the next processing time of each processing component and distributes a job to a processing component with minimum processing time. This paper implements the job scheduling model on the DEVS modeling and simulation environment and evaluates its efficiency and reliability. Empirical results, which are compared to conventional scheduling policies, show the usefulness of service prediction-based job scheduling.

  • PDF

Service Prediction-Based Job Scheduling Model for Computational Grid (계산 그리드를 위한 서비스 예측 기반의 작업 스케쥴링 모델)

  • Jang Sung-Ho;Lee Jong-Sik
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2005.05a
    • /
    • pp.29-33
    • /
    • 2005
  • Grid computing is widely applicable to various fields of industry including process control and manufacturing, military command and control, transportation management, and so on. In a viewpoint of application area, grid computing can be classified to three aspects that are computational grid, data grid and access grid. This paper focuses on computational grid which handles complex and large-scale computing problems. Computational grid is characterized by system dynamics which handles a variety of processors and jobs on continuous time. To solve problems of system complexity and reliability due to complex system dynamics, computational grid needs scheduling policies that allocate various jobs to proper processors and decide processing orders of allocated jobs. This paper proposes the service prediction-based job scheduling model and present its algorithm that is applicable for computational grid. The service prediction-based job scheduling model can minimize overall system execution time since the model predicts a processing time of each processing component and distributes a job to processing component with minimum processing time. This paper implements the job scheduling model on the DEVSJAVA modeling and simulation environment and simulates with a case study to evaluate its efficiency and reliability Empirical results, which are compared to the conventional scheduling policies such as the random scheduling and the round-robin scheduling, show the usefulness of service prediction-based job scheduling.

  • PDF

COMPUTATIONAL ANALYSIS OF AN ELECTRO-THERMAL ICE PROTECTION SYSTEM IN ATMOSPHERIC ICING CONDITIONS (대기 결빙 조건에서의 전기열 방식 결빙보호 시스템에 관한 전산해석)

  • Raj, L.P.;Myong, R.S.
    • Journal of computational fluids engineering
    • /
    • v.21 no.1
    • /
    • pp.1-9
    • /
    • 2016
  • Atmospheric icing may have significant effects not only on safety of aircraft in air, but also on performance of wind turbine and power networks on ground. Thus, ice protection measure should be developed to protect these systems from icing hazards. A very efficient method is the electro-thermal de-icing based on a process by which ice accretion is melted and blown away through aerodynamic forces. In this computational study, a state-of-the-art icing code, FENSAP-ICE, was used for the analysis of electro thermal de-icing system. Computational results including detailed conjugate heat transfer analysis were then validated with experimental data. Further, the computational model was applied to the DU21 airfoil section of NREL 5MW wind turbine with calculated heater parameters.

Construction and Service of a Web-based Simulation software management system for the Computational Science and Engineering (계산과학공학 분야를 위한 웹 기반 시뮬레이션 소프트웨어 관리 시스템 구축 및 서비스)

  • Jeon, Inho;Kwon, Yejin;Ma, Jin;Lee, Sik;Cho, Kum Won;Seo, Jerry
    • Journal of Internet Computing and Services
    • /
    • v.18 no.4
    • /
    • pp.99-108
    • /
    • 2017
  • Open Science is evolving not only to share research results, but also to open the research process. We are developing the EDISON platform for the spread of open science in computational science and engineering. The EDISON platform provides online simulation services developed by computational science and engineering researchers. It also provides an environment for sharing source code, data, and related research publications. An effective simulation software registration management system is required for successful service on the EDISON platform. In this paper, we proposes a simulation software management system to provide online simulation service through EDISON platform. The proposed system allows the developer to register the simulation software on the EDISON platform without administrator intervention and effectively build a web-based simulation environment.