• 제목/요약/키워드: Computational structural dynamics

검색결과 352건 처리시간 0.029초

Effect of hydraulic and structural parameters on the wave run-up over the berm breakwaters

  • Milanian, Farzad;Niri, Mahmood Zakeri;Najafi-Jilani, Ataollah
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제9권3호
    • /
    • pp.282-291
    • /
    • 2017
  • The main aim of this study is to investigate the effect of berm breakwater on wave run-up. A total of 200 numerical analysis tests have been carried out in this paper to investigate the effect of berm width, wave height, and wave period on the wave run-up, using an integrating technique of Computer-Aided Design (CAD) and Computational Fluid Dynamics (CFD). Direct application of Navier Stokes equations within the berm width has been used to provide a more reliable approach for studying the wave run-up over berm breakwaters. A well tested Reynolds-averaged Navier-Stokes (RANS) code with the Volume of Fluid (VOF) scheme was adopted for numerical computations. The computational results were compared with theoretical data to validate the model outputs. Numerical results showed that the simulation method can provide accurate estimations for wave run-up over berm breakwaters. It was found that the wave run-up may be decreased by increasing the berm width up to about 36 percent. Furthermore, the wave run-up may increase by increasing the wave height and wave period up to about 53 and 36 percent, respectively. These results may convince the engineers to use this model for design of berm breakwater in actual scale by calculating the Reynolds numbers.

다분야통합최적설계를 위한 데이터 서버 중심의 컴퓨팅 기반구조 (Data Server Oriented Computing Infrastructure for Process Integration and Multidisciplinary Design Optimization)

  • 홍은지;이세정;이재호;김승민
    • 한국CDE학회논문집
    • /
    • 제8권4호
    • /
    • pp.231-242
    • /
    • 2003
  • Multidisciplinary Design Optimization (MDO) is an optimization technique considering simultaneously multiple disciplines such as dynamics, mechanics, structural analysis, thermal and fluid analysis and electromagnetic analysis. A software system enabling multidisciplinary design optimization is called MDO framework. An MDO framework provides an integrated and automated design environment that increases product quality and reliability, and decreases design cycle time and cost. The MDO framework also works as a common collaborative workspace for design experts on multiple disciplines. In this paper, we present the architecture for an MDO framework along with the requirement analysis for the framework. The requirement analysis has been performed through interviews of design experts in industry and thus we claim that it reflects the real needs in industry. The requirements include integrated design environment, friendly user interface, highly extensible open architecture, distributed design environment, application program interface, and efficient data management to handle massive design data. The resultant MDO framework is datasever-oriented and designed around a centralized data server for extensible and effective data exchange in a distributed design environment among multiple design tools and software.

전산유체역학을 이용한 Degasser Baffle최적설계 연구 (Study on Design Optimization of Degasser Baffles using CFD)

  • 서종무;임효남;이인수;이희성;최재웅
    • 한국해양공학회지
    • /
    • 제29권5호
    • /
    • pp.331-341
    • /
    • 2015
  • A degasser is a separation unit used in drilling to separate gas from the drilling mud. The degasser used in offshore drilling was developed at an early stage of drilling. Since its development, the design of the degasser’s internal structure has been optimized, with many limitations due to the restrictions of experimental and computational performance measurement methods. Despite the recent development of CFD technology for multiphase flow analysis, CFD has only been used in a limited way for degasser internal flow analysis and design optimization. In this study, a design optimization procedure for a degasser’s internal structure design was proposed, and CFD analyses of three types of internal structural designs were performed to evaluate the separation performance. The CFD result for each design type was used for the design optimization and, as the result, an optimized design is proposed.

Comparison of NMR structures refined under implicit and explicit solvents

  • Jee, Jun-Goo
    • 한국자기공명학회논문지
    • /
    • 제19권1호
    • /
    • pp.1-10
    • /
    • 2015
  • Refinements with atomistic molecular dynamics (MD) simulation have contributed to improving the qualities of NMR structures. In most cases, the calculations with atomistic MD simulation for NMR structures employ generalized-Born implicit solvent model (GBIS) to take into accounts solvation effects. Developments in algorithms and computational capacities have ameliorated GBIS to approximate solvation effects that explicit solvents bring about. However, the quantitative comparison of NMR structures in the latest GBIS and explicit solvents is lacking. In this study, we report the direct comparison of NMR structures that atomistic MD simulation coupled with GBIS and water molecules refined. Two model proteins, GB1 and ubiquitin, were recalculated with experimental distance and torsion angle restraints, under a series of simulated annealing time steps. Whereas the root mean square deviations of the resulting structures were apparently similar, AMBER energies, the most favored regions in Ramachandran plot, and MolProbity clash scores witnessed that GBIS-refined structures had the better geometries. The outperformance by GBIS was distinct in the structure calculations with sparse experimental restraints. We show that the superiority stemmed, at least in parts, from the inclusion of all the pairs of non-bonded interactions. The shorter computational times with GBIS than those for explicit solvents makes GBIS a powerful method for improving structural qualities particularly under the conditions that experimental restraints are insufficient. We also propose a method to separate the native-like folds from non-violating diverged structures.

생명정보학적 관점에서의 조류 인플루엔자 연구동향 (The Current Trend of Avian Influenza Viruses in Bioinformatics Research)

  • 안인성;손현석
    • Journal of Preventive Medicine and Public Health
    • /
    • 제40권2호
    • /
    • pp.185-190
    • /
    • 2007
  • Objectives : Since the first human infection from avian influenza was reported in Hong Kong in 1997, many Asian countries have confirmed outbreaks of highly pathogenic H5N1 avian influenza viruses. In addition to Asian countries, the EU authorities also held an urgent meeting in February 2006 at which it was agreed that Europe could also become the next target for H5N1 avian influenza in the near future. In this paper, we provide the general and applicable information on the avian influenza in the bioinformatics field to assist future studies in preventive medicine. Methods : We introduced some up-to-date analytical tools in bioinformatics research, and discussed the current trends of avian influenza outbreaks. Among the bioinformatics methods, we focused our interests on two topics: pattern analysis using the secondary database of avian influenza, and structural analysis using the molecular dynamics simulations in vaccine design. Results : Use of the public genome databases available in the bioinformatics field enabled intensive analysis of the genetic patterns. Moreover, molecular dynamic simulations have also undergone remarkable development on the basis of the high performance supercomputing infrastructure these days. Conclusions : The bioinformatics techniques we introduced in this study may be useful in preventive medicine, especially in vaccine and drug discovery.

Two-way fluid-structure interaction simulation for steady-state vibration of a slender rod using URANS and LES turbulence models

  • Nazari, Tooraj;Rabiee, Ataollah;Kazeminejad, Hossein
    • Nuclear Engineering and Technology
    • /
    • 제51권2호
    • /
    • pp.573-578
    • /
    • 2019
  • Anisotropic distribution of the turbulent kinetic energy and the near-field excitations are the main causes of the steady state Flow-Induced Vibration (FIV) which could lead to fretting wear damage in vertically arranged supported slender rods. In this article, a combined Computational Fluid Dynamics (CFD) and Computational Structural Mechanic (CSM) approach named two-way Fluid-Structure Interaction (FSI) is used to investigate the modal characteristics of a typical rod's vibration. Performance of an Unsteady Reynolds-Average Navier-Stokes (URANS) and Large Eddy Simulation (LES) turbulence models on asymmetric fluctuations of the flow field are investigated. Using the LES turbulence model, any large deformation damps into a weak oscillation which remains in the system. However, it is challenging to use LES in two-way FSI problems from fluid domain discretization point of view which is investigated in this article as the innovation. It is concluded that the near-wall meshes whiten the viscous sub-layer is of great importance to estimate the Root Mean Square (RMS) of FIV amplitude correctly as a significant fretting wear parameter otherwise it merely computes the frequency of FIV.

Study on transient performance of tilting-pad thrust bearings in nuclear pump considering fluid-structure interaction

  • Qiang Li;Bin Li;Xiuwei Li;Quntao Xie;Qinglei Liu;Weiwei Xu
    • Nuclear Engineering and Technology
    • /
    • 제55권6호
    • /
    • pp.2325-2334
    • /
    • 2023
  • To study the lubrication performance of tilting-pad thrust bearing (TPTBs) during start-up in nuclear pump, a hydrodynamic lubrication model of TPTBs was established based on the computational fluid dynamics (CFD) method and the fluid-structure interaction (FSI) technique. Further, a mesh motion algorithm for the transient calculation of thrust bearings was developed based on the user defined function (UDF). The result demonstrated that minimum film thickness increases first and then decreases with the rotational speed under start-up condition. The influence of pad tilt on minimum film thickness is greater than that of collar movement at low speed, and the establishment of dynamic pressure mainly depends on pad tilt and minimum film thickness increases. As the increase of rotational speed, the influence of pad tilt was abated, where the influence of the moving of the collar dominated gradually, and minimum film thickness decreases. For TPTBs, the circumferential angle of the pad is always greater than the radial angle. When the rotational speed is constant, the change rate of radial angle is greater than that of circumferential angle with the increase of loading forces. This study can provide reference for improving bearing wear resistance.

해상풍력 해저케이블 하역용 유압식 코일링 암 구조설계 및 해석 (Structural Design and Analysis of a Hydraulic Coiling Arm for Offshore Wind-turbine Submarine Cable)

  • 김명환;김동현;오민우
    • 한국전산구조공학회논문집
    • /
    • 제26권1호
    • /
    • pp.1-7
    • /
    • 2013
  • 본 논문에서는 해저케이블 부두 하역용 장비인 코일링 암(coiling arm)에 대한 국산화 자체개발 내용 중 구조설계 및 해석결과 내용을 제시하였다. 상세 구조설계를 위해 3차원 CAD 프로그램을 이용하여 고 정밀도의 모델링을 수행하였고, 유한요소 기법을 이용하여 전산구조해석을 수행하였다. 코일링 암의 활용 목적에 맞추어 하역대상 케이블을 선박에서 케이블 탱크로 하역시 효과적으로 가이드 할 수 있도록 베어링 및 롤러 부품을 설계하여 메인 암이 회전하고 케이블 가이드가 이동할 수 있도록 하였고, 기존의 외국 모델에서 사용하던 와이어 및 모터 시스템을 이용한 케이블 가이드 작동방식을 유압 시스템을 이용한 작동방식으로 변경하여 원가절감을 달성하면서 사용자가 직관적으로 작동할 수 있도록 설계하였다. 장비 자체의 자중 및 하역 케이블 하중조건에 대한 응력 해석을 수행하였고, 유압시스템의 과작동에 따른 파손 가능성을 고려하였다. 케이블 가이드의 운동 및 설치 지면의 경사도에 따른 전복 안전성 해석을 수행하였으며, 설치장소의 풍하중 효과도 추가로 고려하였다. 본 연구를 통해 기존 수입품 코일링 암의 작동방식 개선과 독자적인 구조설계 및 해석 방법을 확립하였으며, 실제 국내 최초로 자체 개발된 제품의 현장설치 완료 및 하역작업의 효율적이고 정상적인 운영을 완료 및 검증하였다.

계산과학 시뮬레이션을 위한 웹 인터페이스 자동 생성 시스템 개발 (EDISON Platform to Supporting Education and Integration Research in Computational Science)

  • 진두석;이종숙;조금원;정재유;정회경
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2011년도 추계학술대회
    • /
    • pp.799-801
    • /
    • 2011
  • 컴퓨터 시뮬레이션을 이용한 계산과학 응용분야 연구에서는 대용량 컴퓨팅 자원 및 고성능 네트워크 기반의 사이버 인프라스트럭처를 활용하여 복잡한 공학문제를 수치적 모델링과 대규모 계산을 통해 해결한다. 최근에는 이러한 계산과학 시뮬레이션 수행을 다수 사용자들이 언제 어디서나 쉽게 접근하여 사용할 수 있도록 해주는 웹기반 시뮬레이션 수행 환경의 필요성이 요구되고 있다. 그러나 화학, 물리, 구조, 등 계산과학 응용분야의 연구자들이 웹기반 시뮬레이션 수행 환경에서 동작하는 시뮬레이션 도구를 직접 개발하기 위해서는 추가적으로 복잡하고 다양한 IT기술들을 습득하기 위한 많은 시간과 노력이 소요된다. 따라서, 본 논문에서는 응용분야 연구자들이 핵심 알고리즘 연구에만 집중할 수 있도록 웹기반 시뮬레이션 수행을 위한 웹 인터페이스 자동 생성 시스템을 제공한다.

  • PDF

모터사이클 머플러 내부 열.유동에 관한 시뮬레이션 (A Simulation on the Thermal and Fluid about Motorcycle Muffler)

  • 이중섭;지명국;심규진;정한식;이철재;배재영
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2642-2647
    • /
    • 2007
  • This study represents numerical study on the thermal and fluid flow characteristics of exhaust gas in a motorcycle muffler. The reference engine was used 124.cc small displacement. Numerical analysis with computational fluid dynamics(CFD) was carried out to investigate the exhaust gas that flow into a motorcycle muffler. The STAR-CD S/W used to three dimensional steady state CFD analysis in a muffler. And than We got the information of static pressure it is used to structural analysis ant the first baffle plate using the commercial CAE code ANSYS workbench. Exhaust gas flow third chamber from frist chamber and running second chamber. A simulation result shows that each chamber of muffler temperature is about 460 K, 445 and 463K and pressure is about 22,000 Pa, 16,000 Pa and 10,000 Pa.

  • PDF