• Title/Summary/Keyword: Computational fluid dynamic (CFD)

Search Result 267, Processing Time 0.027 seconds

Rotordynamic Analysis of Labyrinth Seal with Swirl Brake (스월 브레이크가 장착된 래버린스 씰의 동특성 해석)

  • Lee, Jeongin;Suh, Junho
    • Tribology and Lubricants
    • /
    • v.38 no.2
    • /
    • pp.63-69
    • /
    • 2022
  • In this research, the rotordynamic characteristics of the labyrinth seal with and without swirl brake were predicted using the computational fluid dynamic (CFD) model. Based on previous studies, a simple swirl brake consisting of square vanes without stagger angle is designed and placed in front of the seal inlet. The rotating frame of reference is utilized to consider the whirling motion of the rotor in the steady-state analysis since the whirling motion is transient behavior in nature. CFD analysis was performed in the range of -1 to 1 pre-swirl ratio for a given seal and swirl brake design and operating conditions. The CFD analysis result shows that the swirl brake effectively reduces the pre-swirl since the circumferential fluid velocity of labyrinth seal with swirl brake was lower than that without swirl brake. The cross-coupled stiffness coefficient, which is greatly affected by the circumferential fluid velocity, increased with an increasing pre-swirl ratio in a seal without a swirl brake but showed a low value in a seal with a swirl brake. The change in the damping coefficient was relatively small. The effective damping coefficient of the labyrinth seal with swirl brake was generally constant and showed a higher value than the labyrinth seal without swirl brake.

A Study on a Perfomance Analysis of the Centrifugal Pump Impeller using CFD (CFD에 의한 원심펌프 임펠러 성능해석에 관한 연구)

  • 남구만;모장오;강신정;임효남;이영호
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.89-94
    • /
    • 2002
  • A commercial CFD code is used to calculate the 3-D viscous flow field within the centrifugal pump impeller. Design conditions are changed by impeller inlet(9.3mm, 12.2mm) and outlet breadth(6.65mm, 6.85mm). Numerical calculation was performed by changing flow rate from 8 to 26m$^{3}$/hr. Computation results shows that total head is increased at the larger inlet and outlet breadth than the others. And when the flow rate is increasing, the total head was decreased. The maximum efficiency of pump is shown at the design flow rate(16m$^{3}$/hr). In this study shows that the calculated results are good agreements with analysis results of design condition.

  • PDF

Evaluation of Dynamic Characteristics for a Submerged Body with Large Angle of Attack Motion via CFD Analysis

  • Jeon, Myungjun;Mai, Thi Loan;Yoon, Hyeon Kyu;Ryu, Jaekwan;Lee, Wonhee;Ku, Pyungmo
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.5
    • /
    • pp.313-326
    • /
    • 2021
  • A submerged body with varied control inputs can execute large drift angles and large angles of attack, as well as basic control such as straight movement and turning. The objective of this study is to analyze the dynamic characteristics of a submerged body comprising six thrusters and six control planes, which is capable of a large drift angle and angle of attack motion. Virtual captive model tests via were analyzed via computational fluid dynamics (CFD) to determine the dynamic characteristics of the submerged body. A test matrix of virtual captive model tests specialized for large-angle motion was established. Based on this test matrix, virtual captive model tests were performed with a drift angle and angle of attack of approximately 30° and 90°, respectively. The characteristics of the hydrodynamic force acting on the horizontal and vertical surfaces of the submerged body were analyzed under the large-angle motion condition, and a model representing this hydrodynamic force was established. In addition, maneuvering simulation was performed to evaluate the standard maneuverability and dynamic characteristics of large-angle motion. Considering the shape characteristics of the submerged body, we attempt to verify the feasibility of the analysis results by analyzing the characteristics of the hydrodynamic force when the large-angle motion occurred.

A Study on flow characteristics around mountain using CFD method (풍속표준화를 위한 산악지형의 영향에 관한 수치해석적 연구)

  • Lee, Jong-Hoon;Kwon, Ji-Hyuk;Lee, Yeon-Won;Kim, Young-Duk
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.109-112
    • /
    • 2006
  • Recently, when we conducted meteorological observations, complicated land or building around weather station has influenced on the wind distribution. So, we should understand the effect of geometry to get more accurate data. In this study, we analyze the ideal geometry whose shape is hemisphere using CFD method. And then we apply this method to real geometry. And we investigate the velocity at the location of weather station. As the results, we could find out an important relationship between geometry and flow field.

  • PDF

Near-Field Hydrodynamic Analysis of the Submerged Thermal Discharge Using CFD Model (CFD 모델을 이용한 수중방류 온배수의 근역 동수역학 해석)

  • Hwang, In-Tae;Kim, Deok-Ho
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.6
    • /
    • pp.466-473
    • /
    • 2011
  • The buoyancy and initial momentum fluxes make near-field dominated by buoyant jet when thermal discharge releases underwater. In order to estimate prediction capabilities of those near-field phenomena, non-hydrostatic RANS applied CFD(Computational Fluid Dynamic) model was used. Condition of model was composed based on past laboratory experiments. Numerical simulations carried out for the horizontal buoyant jet in the stagnant flow and vertical buoyant jet into crossflow. The results of simulation are compared with the terms of trajectory and dilution rate of laboratory experiments and analytic model(CorJET) results. CFD model showed a good agreement with them. CFD model can be appropriate for assessment of submerged thermal discharge effect because CFD model can resolve the limitations of near-field analytic model and far-field quasi 3D hydrodynamic model. The accuracy and capability of the CFD model is reviewed in this study. If the computational efficiency get improved, CFD model can be widely applied for simulation of transport and diffusion of submerged thermal discharge.

An Analytical Study on Evaluation of Opening Performance of Steam Safety Valve for Nuclear Power Plant (원자력 증기용 안전밸브의 개방성능 평가를 위한 해석적 연구)

  • Sohn, Sangho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.1
    • /
    • pp.5-11
    • /
    • 2014
  • The purpose of this paper is to investigate an analytical approach for opening performance evaluation of the nuclear pressure safety valve based on standard codes such as ASME or KEPIC. It is well-known that safety valve is considered as one of pressure relief valves for protecting a boiler or pressure vessel from exceeding the maximum allowable working pressure. When pressure in a container reaches its set pressure, the safety valve commences discharging the internal fluid by a sudden opening called as popping. Safety valve is usually evaluated by set pressure, full open, blow-down, leakage and flow capacity. The test procedure and technical requirement for performance evaluation is described in international code of ASME code such as BPVC. The opening characteristics of steam safety valve can be analyzed by computational fluid dynamics (CFD) and steam shaft dynamics. First, the flow analysis along opening process is simulated by running the CFD models of the ten types of opening steps from 0 to 100%. As a analysis result, the various CFD outputs of flow pattern, pressure, forces on the disc and mass flow at each simulation step is demonstrated. The lift force is calculated by using the forces applied on disc from static pressure and secondary flow. And, the effect of huddle chamber or control chamber is studied by dynamic analysis based on CFD simulation results such as lift force. As a result, dynamics analysis shows opening features according to the sizes of control chamber.

Flow-Turbine Interaction CFD Analysis for Performance Evaluation of Vertical Axis Tidal Current Turbines (II) (수직축 조류 터빈 발전효율 평가를 위한 유동-터빈 연동 CFD 해석 (II))

  • Yi, Jin-Hak;Oh, Sang-Ho;Park, Jin-Soon;Lee, Kwang-Soo;Lee, Sang-Yeol
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.3
    • /
    • pp.73-78
    • /
    • 2013
  • CFD (computational fluid dynamics) analyses that considered the dynamic interaction effects between the flow and a turbine were performed to evaluate the power output characteristics of two representative vertical-axis tidal-current turbines: an H-type Darrieus turbine and Gorlov helical turbine (GHT). For this purpose, a commercial CFD code, Star-CCM+, was utilized, and the power output characteristic were investigated in relation to the scale ratio using the relation between the Reynolds number and the lift-to-drag ratio. It was found that the power coefficients were significantly reduced when the scaled model turbine was used, especially when the Reynolds number was lower than $10^5$. The power output characteristics of GHT in relation to the twisting angle were also investigated using a three-dimensional CFD analysis, and it was found that the power coefficient was maximized for the case of a Darrieus turbine, i.e., a twisting angle of $0^{\circ}$, and the torque pulsation ratio was minimized when the blade covered $360^{\circ}$ for the case of a turbine with a twisting angle of $120^{\circ}$.

Flow Interaction of Sailing Drone using Numerical Method

  • Ngoc, Pham Minh;Choi, Min-Seon;Yang, Changjo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2019.11a
    • /
    • pp.230-232
    • /
    • 2019
  • There is an accelerating need for ocean sensing where autonomous vehicles can play a key role in assisting engineers, researcher and scientists with environmental monitoring and collecting oceanographic data. This paper is performed to develops an autonomous sailing drone to be used as a sensor carrying platform for autonomous data acquisition at Sea. From a sailing drone design viewpoint, it is important to establish reliable prediction methods for sailing drone's resistance. The required power for the propulsion unit depends on the ship resistance and speed. There are three solutions for the prediction of ship resistance as follow analytical methods, model tests in tanks and Computational Fluid Dynamics (CFD). The present paper aims at simulating sailing drone friction resistance using numerical method. The dynamic mesh motion is used to describe the sailing drone movement.

  • PDF

Application of Computational Fluid Dynamic Simulation to SiC CVD Reactor for Mass Production (대량 생산용 SiC CVD 리엑터에의 전산유체역학 시뮬레이션의 적용)

  • Seo, Jin-Won;Choi, Kyoon
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.6
    • /
    • pp.533-538
    • /
    • 2013
  • Silicon carbide (SiC) materials are typical ceramic materials with a wide range of uses due to their high hardness and strength and oxidation resistance. In particular, due to the corrosion resistance of the material against acids and bases including the chemical resistance against ionic gases such as plasma, the application of SiC has been expanded to extreme environments. In the SiC deposition process, where chemical vapor deposition (CVD) technology is used, the reactions between the raw gases containing Si and C sources occur from gas phase to solid phases; thus, the merit of the CVD technology is that it can provide high purity SiC in relatively low temperatures in comparison with other fabrication methods. However, the product yield rarely reaches 50% due to the difficulty in performing uniform and dense deposition. In this study, using a computational fluid dynamics (CFD) simulation, the gas velocity inside the reactor and the concentration change in the gas phase during the SiC CVD manufacturing process are calculated with respect to the gas velocity and rotational speed of the stage where the deposition articles are located.

Optimization of the Anastomosis Angle and Diameter with the Systemic- To-Pulmonary Artery Shunt (대동맥-폐동맥 연결관의 접합각도와 직경의 최적화)

  • Kim, Sung-Min;Park, Sung-Yun;Jun, Jae-Hoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.10
    • /
    • pp.123-130
    • /
    • 2007
  • Hypoplastic left heart syndrome is currently the most lethal cardiac malformation of the newborn infant. Survival following a Norwood operation depends on the balance between systemic and pulmonary blood flow, which is highly dependent on the fluid dynamics through the interposition shunt between the two circulations. The purpose of this study is an optimization of the systemic-to-pulmonary artery shunt. In this study, We used computational fluid dynamic(CFD) models to determine the velocity profile in a systemic-to-pulmonary artery shunt and suggested a simplified method of calculating the blood flow in the shunt based on Ultrasound systems. We analyzed the flow characteristic variations and oscillatory shear index(OSI) due to the anastomosis angle and shunt diameter changing. Four different CFD models were constructed with the shunt sizes ranging from 3 to 3.5mm. The angle between the brachiocephalic trunk(BCT) and the shunt were $30^{\circ}$ and $45^{\circ}$, respectively. When the diameter is 3.0 mm, the oscillatory shear index decreased by 1.2% at $30^{\circ}$ as opposed to at $45^{\circ}$. When the diameter is 3.5 mm, it increased by 18% more at $30^{\circ}$ as opposed to at $45^{\circ}$. When the joint angle is $30^{\circ}$ and the diameter is 3.0 mm, the oscillatory shear index decreased by 4.1% in comparison with the 3.5 mm diameter. When the angle is $45^{\circ}$ and the diameter is 3.0 mm, the index increased by 14.6% in comparison with the 3.5 mm diameter.